Skip to main content

Nanotechnology Based Approaches for Neurodegenerative Disorders: Diagnosis and Treatment

  • Chapter
  • First Online:
Drug and Gene Delivery to the Central Nervous System for Neuroprotection

Abstract

Nanotechnology has been raised as a promising alternative for the diagnosis and treatment of different neurodegenerative disorders (ND). Among NDs, Alzheimer’s disease (AD) and Parkinson’s disease (PD) represent the most common neurodegenerative disorders worldwide. The early diagnoses of AD and PD together with a successful treatment hampering the neurodegenerative process are priority objectives for the scientific community. Although new treatment strategies and diagnostic methods have been proposed, reach the brain is one of the most challenging tasks in modern medicine. At present, the formulation of different nanomedicine devices has shown several advantages to cross the BBB, offering novel diagnosis and treatment approaches. Therefore, this chapter focuses on nanotechnology solutions for AD and PD diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas. 2012;73(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  2. Nazem A, Ali Mansoori G. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2013;13:199–223.

    Article  Google Scholar 

  3. Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci. 2010;1184(1):154–72.

    Article  CAS  PubMed  Google Scholar 

  4. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev. 2014;71:2–14.

    Article  CAS  PubMed  Google Scholar 

  5. Musyanovych A, Landfester K. Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci. 2014;14(4):458–77.

    Article  CAS  PubMed  Google Scholar 

  6. Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opin Drug Deliv. 2013;10(7):1003–22.

    Article  CAS  PubMed  Google Scholar 

  7. Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm. 2014;87(3):433–44.

    Article  CAS  PubMed  Google Scholar 

  8. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12(1):143–61.

    Article  CAS  PubMed  Google Scholar 

  9. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1–2):121–8.

    Article  PubMed  Google Scholar 

  10. Schlachetzki F, Zhang Y, Boado RJ, Pardridge WM. Gene therapy of the brain: the trans-vascular approach. Neurology. 2004;62:1275–81.

    Article  CAS  PubMed  Google Scholar 

  11. Xia C, Boado RJ, Zhang Y, Chu C, Pardridge WM. Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson’s disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. J Gene Med. 2008;10(3):306–15.

    Article  CAS  PubMed  Google Scholar 

  12. Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7(5):521–40.

    Article  CAS  PubMed  Google Scholar 

  13. Nunes A, Al-Jamal KT, Kostarelos K. Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release. 2012;161(2):290–306.

    Article  CAS  PubMed  Google Scholar 

  14. Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–71.

    Article  CAS  PubMed  Google Scholar 

  15. Choi J-S, Choi HJ, Jung DC, Lee J-H, Cheon J. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem Commun. 2008; (19):2197–9.

    Google Scholar 

  16. Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.

    Article  CAS  PubMed  Google Scholar 

  17. Garbayo E, Estella-Hermoso de Mendoza A, Blanco-Prieto MJ. Diagnostic and therapeutic uses of nanomaterials in the brain. Curr Med Chem. 2014;21(36):4100–31.

    Article  CAS  PubMed  Google Scholar 

  18. Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park K. Trojan monocytes for improved drug delivery to the brain. J Control Release. 2008;132(2):75.

    Article  CAS  PubMed  Google Scholar 

  20. Thuerauf N, Fromm MF. The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci. 2006;256(5):281–6.

    Article  PubMed  Google Scholar 

  21. Tajes M, Ramos-Fernandez E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014;31(5):152–67.

    Article  CAS  PubMed  Google Scholar 

  22. Riley D, Lozano A. The fourth dimension of stereotaxis: timing of neurosurgery for Parkinson disease. Neurology. 2007;68(4):252–3.

    Article  PubMed  Google Scholar 

  23. Blasberg RG, Patlak C, Fenstermacher JD. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther. 1975;195(1):73–83.

    CAS  PubMed  Google Scholar 

  24. Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23(1):35–58.

    Article  CAS  PubMed  Google Scholar 

  25. Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014;5(6):709–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ambikanandan Misra GK. Drug delivery systems from nose to brain. Curr Pharm Biotechnol. 2012;13(12):2355–79.

    Article  PubMed  Google Scholar 

  27. Wen MM. Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: current development. Discov Med. 2011;11(61):497–503.

    PubMed  Google Scholar 

  28. Gartziandia O, Herran E, Pedraz JL, Carro E, Igartua M, Hernandez RM. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces. 2015;134:304–13.

    Article  CAS  PubMed  Google Scholar 

  29. Clark MA, Hirst BH, Jepson MA. Lectin-mediated mucosal delivery of drugs and microparticles. Adv Drug Deliv Rev. 2000;43(2–3):207–23.

    Article  CAS  PubMed  Google Scholar 

  30. Zou LL, Ma JL, Wang T, Yang TB, Liu CB. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Curr Neuropharmacol. 2013;11(2):197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013;34(36):9220–6.

    Article  CAS  PubMed  Google Scholar 

  32. Gartziandia O, Egusquiaguirre SP, Bianco J, et al. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm. 2016;499(1–2):81–9.

    Article  CAS  PubMed  Google Scholar 

  33. Qin Y, Chen H, Zhang Q, et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm. 2011;420(2):304–12.

    Article  CAS  PubMed  Google Scholar 

  34. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329–44.

    Article  CAS  PubMed  Google Scholar 

  35. Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9(5):387–98.

    Article  CAS  PubMed  Google Scholar 

  36. Desai AK, Grossberg G. Diagnosis and treatment of Alzheimer’s disease. Neurology. 2005;64:S34–9.

    Article  CAS  PubMed  Google Scholar 

  37. John Hardy KC. Amyloid at the blood vessel wall. Nat Med. 2006;12:756–7.

    Article  PubMed  CAS  Google Scholar 

  38. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol. 2003;2(10):605–13.

    Article  CAS  PubMed  Google Scholar 

  39. Fradinger EA, Bitan G. En route to early diagnosis of Alzheimer’s disease – are we there yet? Trends Biotechnol. 2005;23(11):531–3.

    Article  CAS  PubMed  Google Scholar 

  40. Nasrallah IM, Wolk DA. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. J Nucl Med. 2014;55(12):2003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Georganopoulou DG, Chang L, Nam J, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(7):2273–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E. Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry. 2008;74(1):118–23.

    Article  CAS  PubMed  Google Scholar 

  43. Kang D, Lee J, Oh B, Choi J. Ultra-sensitive immunosensor for β-amyloid (1–42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron. 2009;24(5):1431–6.

    Article  CAS  PubMed  Google Scholar 

  44. Neely A, Perry C, Varisli B, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3(9):2834–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skaat H, Margel S. Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils detection and removal by a magnetic field. Biochem Biophys Res Commun. 2009;386(4):645–9.

    Article  CAS  PubMed  Google Scholar 

  46. Yang J, Zaim Wadghiri Y, Minh Hoang D, et al. Detection of amyloid plaques targeted by USPIO-Aβ1–42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage. 2011;55(4):1600–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cheng KK, Chan PS, Fan S, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials. 2015;44:155–72.

    Article  CAS  PubMed  Google Scholar 

  48. Feng L, Li S, Xiao B, et al. Fluorescence imaging of APP in Alzheimer’s disease with quantum dot or Cy3: a comparative study. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010;35(9):903–9.

    CAS  PubMed  Google Scholar 

  49. Tokuraku K, Marquardt M, Ikezu T. Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS One. 2009;4(12):e8492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Roney CA, Arora V, Kulkarni PV, Antich PP, Bonte FJ (2009): Nanoparticulate radiolabelled quinolines detect amyloid plaques in mouse models of Alzheimer’s disease. Int J Alzheimers Dis. doi:10.4061/2009/481031.

  51. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    Article  CAS  PubMed  Google Scholar 

  52. Linazasoro G. A global view of Parkinson’s disease pathogenesis: implications for natural history and neuroprotection. Parkinsonism Relat Disord. 2009;15(6):401–5.

    Article  CAS  PubMed  Google Scholar 

  53. Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356–64.

    Article  CAS  PubMed  Google Scholar 

  54. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  55. Perlmutter JS, Norris SA. Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol. 2014;76(6):769–83.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yue HY, Huang S, Chang J, et al. ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano. 2014;8(2):1639–46.

    Article  CAS  PubMed  Google Scholar 

  57. Baron R, Zayats M, Willner I. Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem. 2005;77(6):1566–71.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu X, Juan H, Zhao Z, et al. Kinetic and sensitive analysis of tyrosinase activity using electron transfer complexes: in vitro and intracellular study. Small. 2015;11(7):862–70.

    Article  CAS  PubMed  Google Scholar 

  59. An Y, Tang L, Jiang X, Chen H, Yang M, Jin L, Zhang S, Wang C, Zhang W. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry. 2010;16(48):14439–46.

    Article  CAS  PubMed  Google Scholar 

  60. Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. Lancet. 2016;388(10043):17–505.

    Article  CAS  Google Scholar 

  61. Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.

    Article  CAS  PubMed  Google Scholar 

  62. Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104(1):29–45.

    Article  CAS  PubMed  Google Scholar 

  63. Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm. 2010;76(2):189–99.

    Article  CAS  PubMed  Google Scholar 

  64. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.

    Article  CAS  PubMed  Google Scholar 

  65. Nagpal K, Singh SK, Mishra DN. Optimization of brain targeted chitosan nanoparticles of Rivastigmine for improved efficacy and safety. Int J Biol Macromol. 2013;59:72–83.

    Article  CAS  PubMed  Google Scholar 

  66. Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Biopharm. 2012;47(1):6–15.

    CAS  Google Scholar 

  67. Pagar KP, Sardar SM, Vavia PR. Novel L-lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer’s disease. J Biomed Nanotechnol. 2014;10(3):415–26.

    Article  CAS  PubMed  Google Scholar 

  68. Bhavna SM, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278–87.

    Article  CAS  Google Scholar 

  69. Herrán E, Pérez-González R, Igartua M, Pedraz JL, Carro E, Hernández RM. VEGF-releasing biodegradable nanospheres administered by craniotomy: a novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer’s disease. J Control Release. 2013;170(1):111–9.

    Article  PubMed  CAS  Google Scholar 

  70. Herrán E, Pérez-González R, Igartua M, Pedraz JL, Carro E, Hernández RM. Enhanced hippocampal neurogenesis in APP/Ps1 mouse model of Alzheimer’s disease after implantation of VEGF-loaded PLGA nanospheres. Curr Alzheimer Res. 2015;12(10):932–40.

    Article  PubMed  CAS  Google Scholar 

  71. Zhao Y, Li X, Lu C, et al. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine. 2014;10(4):755–64.

    Article  CAS  PubMed  Google Scholar 

  72. Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17(8):564–74.

    Article  CAS  PubMed  Google Scholar 

  73. Liu G, Men P, Harris PLR, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  74. Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle–chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci Lett. 2009;455(3):187–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mufamadi MS, Choonara YE, Kumar P, et al. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int J Pharm. 2013;448(1):267–81.

    Article  CAS  PubMed  Google Scholar 

  76. Xie Y, Ye L, Zhang X, et al. Transport of nerve growth factor encapsulated into liposomes across the blood–brain barrier: In vitro and in vivo studies. J Control Release. 2005;105(1–2):106–19.

    Article  CAS  PubMed  Google Scholar 

  77. Yung-Chih Kuo CL. Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomedicine. 2015;10:2653–72.

    PubMed  PubMed Central  Google Scholar 

  78. Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2015;23(4):1434–43.

    Article  PubMed  CAS  Google Scholar 

  79. Laserra S, Basit A, Sozio P, et al. Solid lipid nanoparticles loaded with lipoyl–memantine codrug: preparation and characterization. Int J Pharm. 2015;485(1–2):183–91.

    Article  CAS  PubMed  Google Scholar 

  80. Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B Biointerfaces. 2015;134:88–97.

    Article  CAS  PubMed  Google Scholar 

  81. Frozza RL, Bernardi A, Juliana B, Meneghetti AB, Matté A, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol. 2013;47(3):1066–80.

    Article  CAS  PubMed  Google Scholar 

  82. Coradini K, Lima FO, Oliveira CM, et al. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur J Pharm Biopharm. 2014;88(1):178–85.

    Article  CAS  PubMed  Google Scholar 

  83. Revilla S, Ursulet S, Álvarez-López MJ, et al. Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther. 2014;20(11):961–72.

    Article  CAS  PubMed  Google Scholar 

  84. Iwasaki Y, Negishi T, Inoue M, Tashiro T, Tabira T, Kimura N. Sendai virus vector-mediated brain-derived neurotrophic factor expression ameliorates memory deficits and synaptic degeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci Res. 2012;90(5):981–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ciesler J, Sari Y. Neurotrophic peptides: potential drugs for treatment of amyotrophic lateral sclerosis and Alzheimer’s disease. Open J Neurosci. 2013;3:2.

    PubMed  PubMed Central  Google Scholar 

  86. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  87. Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001;30(3):665–76.

    Article  CAS  PubMed  Google Scholar 

  88. Kuo Y, Chou P. Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci. 2014;103(8):2484–97.

    Article  CAS  PubMed  Google Scholar 

  89. Stefani M, Rigacci S. Beneficial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors. 2014;40(5):482–93.

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Wang W, Li L, Perry G, Lee H, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842(8):1240–7.

    Article  CAS  PubMed  Google Scholar 

  91. Gobbi M, Re F, Canovi M, et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials. 2010;31(25):6519–29.

    Article  CAS  PubMed  Google Scholar 

  92. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389(1–2):207–12.

    Article  CAS  PubMed  Google Scholar 

  93. Ma T, Tan M-S, Yu J-T, Tan L. Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed Res Int. 2014;2014:350516.

    PubMed  PubMed Central  Google Scholar 

  94. Garbayo E, Ansorena E, Blanco-Prieto MJ. Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas. 2013;76(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  95. Rodríguez-Nogales C, Garbayo E, Carmona-Abellán MM, Luquin MR, Blanco-Prieto MJ. Brain aging and Parkinson’s disease: new therapeutic approaches using drug delivery systems. Maturitas. 2016;84:25–31.

    Article  PubMed  CAS  Google Scholar 

  96. Rascol O, Goetz C, Koller W, Poewe W, Sampaio C. Treatment interventions for Parkinson’s disease: an evidence based assessment. Lancet. 2002;359(9317):1589–98.

    Article  PubMed  Google Scholar 

  97. Sauerbier A, Jenner P, Todorova A, Chaudhuri KR. Non motor subtypes and Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Supplement 1):S41–6.

    Article  PubMed  Google Scholar 

  98. Pillay S, Pillay V, Choonara YE, et al. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int J Pharm. 2009;382(1–2):277–90.

    Article  CAS  PubMed  Google Scholar 

  99. Trapani A, De Giglio E, Cafagna D, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm. 2011;419(1–2):296–307.

    Article  CAS  PubMed  Google Scholar 

  100. Pahuja R, Seth K, Shukla A, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano. 2015;9(5):4850–71.

    Article  CAS  PubMed  Google Scholar 

  101. Sharma S, Lohan S, Murthy RSR. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm. 2013;40(7):869–78.

    Article  PubMed  CAS  Google Scholar 

  102. D’Aurizio E, Sozio P, Cerasa LS, Vacca M, Brunetti L, Orlando G, Chiavaroli A, Kok RJ, Hennink WE, Di Stefano A. Biodegradable microspheres loaded with an anti-Parkinson prodrug: an in vivo pharmacokinetic study. Mol Pharm. 2011;8(6):2408–15.

    Article  PubMed  CAS  Google Scholar 

  103. Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the efficiency of Parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol. 2014;23(3):246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang X, Zheng R, Cai Y, Liao M, Yuan W, Liu Z. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomedicine. 2012;7:2077–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ren T, Yang X, Wu N, Cai Y, Liu Z, Yuan W. Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats. Neurosci Lett. 2011;502(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  106. Wang A, Wang L, Sun K, Liu W, Sha C, Li Y. Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats. Pharm Res. 2012;29(9):2367–76.

    Article  CAS  PubMed  Google Scholar 

  107. Jafarieh O, Md S, Ali M, et al. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm. 2015;41(10):1674–81.

    Article  CAS  PubMed  Google Scholar 

  108. Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  109. Jollivet C, Aubert-Pouessel A, Clavreul A, et al. Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson’s disease. Neurosci Lett. 2004;356(3):207–10.

    Article  CAS  PubMed  Google Scholar 

  110. Jollivet C, Aubert-Pouessel A, Clavreul A, et al. Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson’s disease. Biomaterials. 2004;25(5):933–42.

    Article  CAS  PubMed  Google Scholar 

  111. Garbayo E, Montero-Menei CN, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ. Effective GDNF brain delivery using microspheres—A promising strategy for Parkinson’s disease. J Control Release. 2009;135(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  112. Garbayo E, Ansorena E, Lanciego JL, Blanco-Prieto MJ, Aymerich MS. Long-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson’s disease. Mov Disord. 2011;26(10):1943–7.

    Article  PubMed  Google Scholar 

  113. Gujral C, Minagawa Y, Fujimoto K, Kitano H, Nakaji-Hirabayashi T. Biodegradable microparticles for strictly regulating the release of neurotrophic factors. J Control Release. 2013;168(3):307–16.

    Article  CAS  PubMed  Google Scholar 

  114. Herran E, Requejo C, Ruiz-Ortega JA, et al. Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine. 2014;9(1):2677–87.

    PubMed  PubMed Central  Google Scholar 

  115. Herrán E, Ruiz-Ortega JÁ, Aristieta A, et al. In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm. 2013;85(3, Part B):1183–90.

    Article  PubMed  CAS  Google Scholar 

  116. Requejo C, Ruiz-Ortega JA, Bengoetxea H, et al. Topographical distribution of morphological changes in a partial model of Parkinson’s disease—effects of nanoencapsulated neurotrophic factors administration. Mol Neurobiol. 2015;52(2):846–58.

    Article  CAS  PubMed  Google Scholar 

  117. Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z. Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation. Int J Pharm. 2012;422(1–2):436–44.

    Article  CAS  PubMed  Google Scholar 

  118. CV P, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv. 2013;20(1):47–56.

    Article  CAS  Google Scholar 

  119. Esposito l, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res. 2008;25(7):1521–30.

    Article  CAS  PubMed  Google Scholar 

  120. Wang Y, Xu H, Fu Q, Ma R, Xiang J. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. J Neurol Sci. 2011;304(1–2):29–34.

    Article  CAS  PubMed  Google Scholar 

  121. Pangeni R, Sharma S, Mustafa G, et al. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology. 2014;25(48):485102.

    Article  PubMed  CAS  Google Scholar 

  122. Sikorska M, Lanthier P, Miller H, et al. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson’s disease. Neurobiol Aging. 2014;35(10):2329–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu S, Li G, Li X, et al. Transport of glial cell line-derived neurotrophic factor into liposomes across the blood-brain barrier: in vitro and in vivo studies. Int J Mol Sci. 2014;15(3):3612–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eslamboli A, Georgievska B, Ridley RM, et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors Provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci. 2005;25(4):769–77.

    Article  CAS  PubMed  Google Scholar 

  125. Chen X, Liu W, Guoyuan Y, et al. Protective effects of intracerebral adenoviral-mediated GDNF gene transfer in a rat model of Parkinson’s disease. Parkinsonism Relat Disord. 2003;10(1):1–7.

    Article  PubMed  Google Scholar 

  126. Kozlowski DA, Connor B, Tillerson JL, Schallert T, Bohn MC. Delivery of a GDNF Gene into the substantia nigra after a progressive 6-OHDA lesion maintains functional nigrostriatal connections. Exp Neurol. 2000;166(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  127. Eberling JL, Kells AP, Pivirotto P, et al. Functional effects of AAV2-GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum Gene Ther. 2009;20(5):511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gonzalez-Barrios JA, Lindahl M, Bannon MJ, et al. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol Ther. 2006;14(6):857–65.

    Article  CAS  PubMed  Google Scholar 

  129. Huang R, Ke W, Liu Y, et al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci. 2010;290(1–2):123–30.

    Article  CAS  PubMed  Google Scholar 

  130. Huang R, Han L, Li J, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med. 2009;11(9):754–63.

    Article  CAS  PubMed  Google Scholar 

  131. Peng Y-S, Lai P-L, Peng S, et al. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier. Int J Nanomedicine. 2014;9:3163–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tian J, Du G, Ye L, et al. Three-month subchronic intramuscular toxicity study of rotigotine-loaded microspheres in cynomolgus monkeys. Food Chem Toxicol. 2013;52:143–52.

    Article  CAS  PubMed  Google Scholar 

  133. Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Rev. 2000;33(2–3):199–227.

    Article  CAS  PubMed  Google Scholar 

  134. Sullivan AM, Toulouse A. Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev. 2011;22(3):157–65.

    Article  CAS  PubMed  Google Scholar 

  135. Shults CW. Therapeutic role of coenzyme Q10 in Parkinson’s disease. Pharmacol Ther. 2005;107(1):120–30.

    Article  CAS  PubMed  Google Scholar 

  136. Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci. 2014;7:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Perez-Martinezc FC, Carrion B, Ceña V. The use of nanoparticles for gene therapy in the nervous system. J Alzheimer Dis. 2012;31(4):697–710.

    Google Scholar 

Download references

Acknowledgment

This project was partially supported by the “Ministerio de Economía y Competitividad” (SAF2013–42347-R), the University of the Basque Country (UPV/EHU) (UFI 11/32), Basque Government (Saiotek S-PE13UN048), (GIC 10/127) and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Maria Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hernando, S., Herran, E., Pedraz, J.L., Igartua, M., Hernandez, R.M. (2017). Nanotechnology Based Approaches for Neurodegenerative Disorders: Diagnosis and Treatment. In: Sharma, H., Muresanu, D., Sharma, A. (eds) Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Springer, Cham. https://doi.org/10.1007/978-3-319-57696-1_3

Download citation

Publish with us

Policies and ethics