Advertisement

Power Allocation with Energy Harvesting Over Fading Channel Under Statistical Delay Constraints

  • Tho Le-Ngoc
  • Khoa Tran Phan
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Next-generation wireless systems are expected to support an ever increasing number of wireless connections with better quality-of-service (QoS), e.g., higher data rate and smaller delay [1, 2]. As a result, energy consumption, as well as energy cost, and greenhouse gas emission are increased, which pose challenges in the design of wireless systems. One promising method to tackle this issue is energy harvesting (EH), where wireless nodes have the capability to harvest energy from the renewable sources (e.g., solar, and thermoelectric, etc.) of the surrounding environment, and store the harvested energy in batteries to carry out their functions. In this chapter, we explore power allocation problems for such EH systems to support delay-sensitive communications.

References

  1. 1.
    M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617–1655, Feb. 2016.Google Scholar
  2. 2.
    J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What Will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, June 2014.Google Scholar
  3. 3.
    N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “On-Line Learning Algorithm for Energy Efficient Delay Constrained Scheduling over Fading Channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 732–742, May 2008.Google Scholar
  4. 4.
    F. Fu, and M. van der Schaar, “Structure-Aware Stochastic Control for Transmission Scheduling,” IEEE Trans. Veh. Tech., vol. 61, no. 9, pp. 3931–3945, Nov. 2012.Google Scholar
  5. 5.
    M. Jayalakshmi, and K. Balasubramanian, “Simple Capacitors to Supercapacitors - An Overview,” Int. J. Electrochem. Sci., vol. 3, no. 11, pp. 1196–1217, Oct. 2008.Google Scholar
  6. 6.
    C. K. Ho, and R. Zhang, “Optimal Energy Allocation for Wireless Communications with Energy Harvesting Constraints,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sept. 2012.Google Scholar
  7. 7.
    P. Blasco, D. Gunduz, and M. Dohler, “A Learning Theoretic Approach to Energy Harvesting Communication System Optimization,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1872–1882, Apr. 2013.Google Scholar
  8. 8.
    L. Huang, and M. Neely, “Utility Optimal Scheduling in Energy-harvesting Networks,” IEEE/ACM Trans. Net., vol. 21, no. 4, pp. 1117–1130, Aug. 2013.Google Scholar
  9. 9.
    O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743, Sept. 2011.Google Scholar
  10. 10.
    E. Altman, Constrained Markov Decision Processes: Stochastic Modeling. London, UK.: Chapman & Hall CRC, 1999.Google Scholar
  11. 11.
    S. Boyd, and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.Google Scholar
  12. 12.
    D. P. Bertsekas. Dynamic Programming and Optimal Control Vol. 1. Belmont, MA: Athens Scientific, 1995.Google Scholar
  13. 13.
    R. Amir, “Supermodularity and Complementarity in Economics: An Elementary Survey,” Southern Economic Journal, vol. 71, no. 3, pp. 636–660, 2005.CrossRefGoogle Scholar
  14. 14.
    N. Zlatanov, Z. Hadzi-Velkov, and R. Schober, “Asymptotically Optimal Power Allocation for Point-to-Point Energy Harvesting Communication Systems,” in Proc. 2013 IEEE GLOBECOM, Atlanta, GA, USA.Google Scholar
  15. 15.
    D. Wu, and R. Negi, “Effective Capacity: A Wireless Link Model for Support of Quality of Service,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 630–643, Jul. 2003.Google Scholar
  16. 16.
    J. Tang and X. Zhang, “QoS-driven Power and Rate Adaptation over Wireless Links,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3058–3068, Aug. 2007.Google Scholar
  17. 17.
    M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of Wireless Networks with Rechargeable Batteries,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 581–593, Feb. 2010.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tho Le-Ngoc
    • 1
  • Khoa Tran Phan
    • 2
  1. 1.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Electrical and Computer Systems EngineeringMonash UniversityClaytonAustralia

Personalised recommendations