Power Allocation Over Fading Channels Under Delay Constraints: A Review

  • Tho Le-Ngoc
  • Khoa Tran Phan
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In many wireless communication scenarios, energy management is an important issue for reasons such as extending a device’s usable life-time. Since transmission power is one of the main energy consumers in wireless devices, efficient power allocation has been an important challenge, which has attracted significant research interests. Consider a point-to-point communications link over a fading channel with random data arrivals at the source. Due to fading, the channel conditions (and the corresponding instantaneous transmission rates) unpredictably fluctuate over time. Hence, the arriving data might not be transmitted to the destination instantly without delay. To overcome the fading nature of wireless channels, the source uses a buffer to store the data arrivals temporarily, which introduces random queuing delay as a consequence. Intuitively, for power savings, the source can simply defer the packet transmission during ‘bad’ channel states, and transmit more packets during ‘good’ channel states, i.e., more power is allocated under more favorable channel conditions. However, such transmission mechanism can lead to long delays for buffered packets since ‘bad’ channel states can happen often. As a result, delay QoS guarantees cannot be provided as required in order to support delay-sensitive communications. Toward this end, several power allocation schemes over fading channels have been proposed to support delay QoS guarantees as briefly discussed in Chap.  1 In this chapter, we will discuss this topic in greater detail.


Orthogonal Frequency Division Multiplex Fading Channel Power Allocation Queue Length Energy Harvesting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Collins, and R. Cruz, “Transmission Policies for Time Varying Channels with Average Delay Constraints,” in Proc. 1999 Allerton Conf. on Commun., Control, and Computing, Urbana, IL, USA.Google Scholar
  2. 2.
    R. Berry, and R. Gallager, “Communication over Fading Channels with Delay Constraints,” IEEE Trans. Infor. Theory, vol. 48, no. 5, pp. 1135–1149, May 2002.Google Scholar
  3. 3.
    M. J. Neely, “Energy Optimal Control for Time Varying Wireless Networks,” IEEE Trans. Infor. Theory, vol. 52, no. 7, pp. 2915–2934, July 2006.Google Scholar
  4. 4.
    N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “On-Line Learning Algorithm for Energy Efficient Delay Constrained Scheduling over Fading Channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 732–742, May 2008.Google Scholar
  5. 5.
    F. Fu, and M. van der Schaar, “Structure-Aware Stochastic Control for Transmission Scheduling,” IEEE Trans. Veh. Tech., vol. 61, no. 9, pp. 3931–3945, Nov. 2012.Google Scholar
  6. 6.
    D. Rajan, A. Sabharwal, and B. Aazhang, “Delay Bounded Packet Scheduling of Bursty Traffic over Wireless Channels,” IEEE Trans. Infor. Theory, vol. 50, no. 1, pp. 125–144, Jan. 2004.Google Scholar
  7. 7.
    H.Wang, and N. B. Mandayam, “A Simple Packet-transmission Scheme for Wireless Data over Fading Channels,” IEEE Trans. Commun., vol. 52, no. 7, pp. 1055–1059, July 2004.Google Scholar
  8. 8.
    M. Agarwal, V. Borkar, and A. Karandikar, “Structural Properties of Optimal Transmission Policies over a Randomly Varying Channel,” IEEE Trans. Autom. Control, vol. 53, no. 6, pp. 1476–1491, July 2008.Google Scholar
  9. 9.
    D. Djonin, and V. Krishnamurthy, “Transmission Control in Fading Channels - A Constrained Markov Decision Process Formulation with Monotone Randomized Policies,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 5069–5083, Oct. 2007.Google Scholar
  10. 10.
    D. Djonin, and V. Krishnamurthy, “Q-Learning Algorithms for Constrained Markov Decision Processes with Randomized Monotone Policies: Applications to MIMO Transmission Control,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2170–2181, May 2007.Google Scholar
  11. 11.
    Y. Cui, V. Lau, R. Wang, and H. Huang, “A Survey on Delay-aware Resource Control for Wireless Systems - Large Derivation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning,” IEEE Trans. Infor. Theory, vol. 58, no. 3, pp. 1677–1701, March 2012.Google Scholar
  12. 12.
    D. S. W. Hui, V. K. N. Lau, and H. L. Wong, “Cross-layer Design for OFDMA Wireless Systems with Heterogeneous Delay Requirements,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2872–2880, Aug. 2007.Google Scholar
  13. 13.
    D. P. Bertsekas. Dynamic Programming and Optimal Control Vol. 1. Belmont, MA: Athens Scientific, 1995.Google Scholar
  14. 14.
    D. Wu, and R. Negi, “Effective Capacity: A Wireless Link Model for Support of Quality of Service,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 630–643, Jul. 2003.Google Scholar
  15. 15.
    D. Wu, Providing Quality-of-Service Guarantees in Wireless Networks. PhD thesis, Carnegie Mellon University, USA, 2003.Google Scholar
  16. 16.
    C.-S Chang, “Stability, Queue Length, and Delay of Deterministic and Stochastic Queuing Networks,” IEEE Trans. Auto. Control, vol. 39, no. 5, pp. 913–931, May 1994.Google Scholar
  17. 17.
    C.-S. Chang, and T. Zajic, “Effective Bandwidths of Departure Processes from Queues with Time Varying Capacities,” in Proc. 1995 IEEE INFOCOMM, Boston, MA, USA.Google Scholar
  18. 18.
    J. Tang and X. Zhang, “QoS-driven Power and Rate Adaptation over Wireless Links,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3058–3068, Aug. 2007.Google Scholar
  19. 19.
    J. Tang, and X. Zhang, “Quality-of-Service Driven Power and Rate Adaptation for Multichannel Communications Over Wireless Links,” IEEE Trans. Wireless Commun., vol. 6, no. 12, pp. 4349–4360, Dec. 2007.Google Scholar
  20. 20.
    X. Zhang, and J. Tang, “Power-delay Tradeoff over Wireless Networks,” IEEE Trans. Commun., vol. 61, no. 9, pp. 3673–3684, Sept. 2013.Google Scholar
  21. 21.
    A. Helmy, L. Musavian, and T. Le-Ngoc, “Energy-efficient Power Adaptation over a Frequency-selective Fading Channel with Delay and Power Constraints,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4529–4541, Sept. 2013.Google Scholar
  22. 22.
    M. C. Gursoy, “MIMO Wireless Communications under Statistical Queueing Constraints,” IEEE Trans. Infor. Theory, vol. 57, no. 9, pp. 5897–5917, Sept. 2011.Google Scholar
  23. 23.
    D. Qiao, M. C. Gursoy, and S. Velipasalar, “Transmission Strategies in Multiple Access Fading Channels with Statistical QoS Constraints,” IEEE Trans. Infor. Theory, vol. 58, no. 3, pp. 1578–1593, Mar. 2012.Google Scholar
  24. 24.
    D. Wu, and R. Negi, “Downlink Scheduling in a Cellular Network for Quality-of-service Assurance,” IEEE Trans. Veh. Technol., vol. 53, no. 5, pp. 1547–1557, Sep. 2004.Google Scholar
  25. 25.
    D. Wu, and R. Negi, “Utilizing Multiuser Diversity for Efficient Support of Quality-of-service over a Fading Channel,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 1198–1206, May 2005.Google Scholar
  26. 26.
    K. T. Phan, and T. Le-Ngoc, “Dynamic Scheduling with Statistical Delay Guarantees and Traffic Dropping,” in Proc. 2013 IEEE VTC-Spring, Dresden, Germany.Google Scholar
  27. 27.
    K. T. Phan, Tho Le-Ngoc, “Online QoS-based Dynamic Scheduling in Multi-channel Wireless Networks,” in Proc. 2013 IEEE WCNC, Shanghai, China.Google Scholar
  28. 28.
    W. Cheng, X. Zhang, and H. Zhang, “Joint Spectrum and Power Efficiencies Optimization for Statistical QoS Provisionings Over SISO/MIMO Wireless Networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 903–915, May 2013.Google Scholar
  29. 29.
    M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617–1655, Feb. 2016.Google Scholar
  30. 30.
    D. Mishra, and S. De, “Energy Harvesting and Sustainable M2M Communication in 5G Mobile Technologies,” in Internet of Things (IoT) in 5G Mobile Technologies, Ed., Springer, 2016, pp 99–125.Google Scholar
  31. 31.
    H. Shafieirad, R. S. Adve, and S. ShahbazPanahi, “Large Scale Energy Harvesting Sensor Networks with Applications in Smart Cities,” in Smart City 360, Ed., Springer, 2016, pp. 215–226.Google Scholar
  32. 32.
    H. Li, C. Huang, F. Alsaadi, A. M. Dobaie, and S. Cui, “Energy Harvesting based Green Heterogeneous Wireless Access for 5G,” in 5G Mobile Communications, Ed., Springer, 2016, pp. 475–502.Google Scholar
  33. 33.
    I. Ahmeda, M. M. Butta, C. Psomasb, A. Mohamed, I. Krikidisb, and M. Guizania, “Survey on Energy Harvesting Wireless Communications: Challenges and Opportunities for Radio Resource Allocation,” Computer Networks, vol. 88, no. 9, pp. 234–248, Sept. 2015.Google Scholar
  34. 34.
    S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang. “Energy Harvesting Wireless Communications: A Review of Recent Advances,” IEEE J. Sel. Areas Commun., vol. 33, no. 5, pp. 360–381, Mar. 2015.Google Scholar
  35. 35.
    P. Blasco, D. Gunduz, and M. Dohler, “A Learning Theoretic Approach to Energy Harvesting Communication System Optimization,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1872–1882, Apr. 2013.Google Scholar
  36. 36.
    O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743, Sept. 2011.Google Scholar
  37. 37.
    C. K. Ho, and R. Zhang, “Optimal Energy Allocation for Wireless Communications with Energy Harvesting Constraints,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sept. 2012.Google Scholar
  38. 38.
    L. Huang, and M. Neely, “Utility Optimal Scheduling in Energy-harvesting Networks,” IEEE/ACM Trans. Net., vol. 21, no. 4, pp. 1117–1130, Aug. 2013.Google Scholar
  39. 39.
    M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of Wireless Networks with Rechargeable Batteries,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 581–593, Feb. 2010.Google Scholar
  40. 40.
    J. Gong, S. Zhang, X. Wang, S. Zhou, and Z. Niu, “Supporting Quality of Service in Energy Harvesting Wireless Links: The Effective Capacity Analysis,” in Proc. 2014 IEEE ICC Workshops, Sydney, NSW, Australia.Google Scholar
  41. 41.
    S. W. Peters, A. Y. Panah, K. T. Truong, and R. W. Heath, “Relaying Architectures for 3GPP LTE-Advanced,” EURASIP Journal on Advances in Signal Processing, vol. 2009, Article ID 618787.Google Scholar
  42. 42.
    M. O. Hasna and M.-S. Alouini, “End-to-End Performance of Transmission System with Relays over Rayleigh-fading Channels,” IEEE Trans. Wireless Commun., vol. 2, no. 6, pp. 1126–1131, Nov. 2003.Google Scholar
  43. 43.
    B. Wang, J. Zhang, and A. Host-Madsen, “On the Capacity of MIMO Relay Channels,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 29–43, Jan. 2005.Google Scholar
  44. 44.
    B. Xia, Y. Fan, J. Thompson, and H. V. Poor, “Buffering in a Three-node Relay Network,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4492–4496, Nov. 2008.Google Scholar
  45. 45.
    I. Krikidis, T. Charalambous, and J. Thompson, “Buffer-aided Relay Selection for Cooperative Diversity Systems without Delay Constraints,” IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1957–1967, 2012.CrossRefGoogle Scholar
  46. 46.
    A. Ikhlef, D. S. Michalopoulos, and R. Schober, “Max-max Relay Selection for Relays with Buffers,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1124–1135, Mar. 2012.Google Scholar
  47. 47.
    D. Qiao, M. C. Gursoy, and S. Velipasalar, “Effective Capacity of Two-Hop Wireless Communication Systems,” IEEE Trans. Infor. Theory, vol. 59, no. 2, pp. 873–885, Feb. 2013.Google Scholar
  48. 48.
    K. T. Phan and T. Le-Ngoc, “Effective Capacities of Dual-Hop Networks with Relay Selection,” in Proc. 2014 IEEE WCNC, Istanbul, Turkey.Google Scholar
  49. 49.
    N. Zlatanov, A. Ikhlef, T. Islam, and R. Schober, “Buffer-aided Cooperative Communications: Opportunities and Challenges,” IEEE Commun. Magazine, vol. 52, no. 4, pp. 146–153, April 2014.Google Scholar
  50. 50.
    N. Zlatanov, R. Schober, and P. Popovski, “Buffer-aided Relaying with Adaptive Link Selection,” IEEE J. Sel. Areas Commun., vol. 31, no. 8, pp. 1530–1542, Aug. 2013.Google Scholar
  51. 51.
    N. Zlatanov, and R. Schober, “Buffer-aided Relaying With Adaptive Link Selection - Fixed and Mixed Rate Transmission,” IEEE Trans. on Inform. Theory, vol. 59, no. 5, pp. 2816–2840, Jan. 2013.Google Scholar
  52. 52.
    B. Zhou, Y. Liu, and M. Tao, “Adaptive Scheduling for OFDM Bidirectional Transmission with A Buffered Relay,” in Proc. 2013 IEEE WCNC, Shanghai, China.Google Scholar
  53. 53.
    V. Jamali, N. Zlatanov, and R. Schober, “Bidirectional Buffer-aided Relay Networks with Fixed Rate Transmission – Part I: Delay-Unconstrained Case,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1323–1338, Oct. 2014.Google Scholar
  54. 54.
    V. Jamali, N. Zlatanov, and R. Schober, “Bidirectional Buffer-aided Relay Networks with Fixed Rate Transmission – Part II: Delay-Constrained Case,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1339–1355, Oct. 2014.Google Scholar
  55. 55.
    H. Shoukry, N. Zlatanov, V. Jamali, and R. Schober, “Achievable Rates for the Fading Three-Hop Half-Duplex Relay Network using Buffer-Aided Relaying,” in Proc. 2014 IEEE GLOBECOM, Austin, TX, USA.Google Scholar
  56. 56.
    M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, Real-time, Full-Duplexing Wireless,” in Proc. 2011 ACM Mobicom, Las Vegas, NV, USA.Google Scholar
  57. 57.
    M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven Characterization of Full-duplex Wireless Systems,” IEEE Trans. Wireless Commun., vol. 11, no. 12, pp. 4296–4307, Dec. 2012.Google Scholar
  58. 58.
    D. Bharadia, E. McMilin, and S. Katti, “Full-Duplex Radios,” in SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 375–386, Aug. 2013.Google Scholar
  59. 59.
    G. Liu, F. R. Yu, H. Ji, V. Leung, and X. Li, “In-Band Full-Duplex Relaying: A Survey, Research Issues and Challenges,” IEEE Commun. Surveys & Tutorials, vol 17, no. 2, pp. 500–524, Jan. 2015.Google Scholar
  60. 60.
    A. Del Coso, and C. Ibars, “Achievable Rates for the AWGN Channel with Multiple Parallel Relays,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2524–2534, May 2009.Google Scholar
  61. 61.
    R. Nikjah, and N. Beaulieu, “Achievable Rates and Fairness in Rateless Coded Decode-and-Forward Half-duplex and Full-duplex Opportunistic Relaying,” in Proc. 2008 IEEE ICC, Beijjing, China.Google Scholar
  62. 62.
    N. Zlatanov, and R. Schober, “Buffer-aided Half-duplex Relaying can Outperform Ideal Full-duplex Relaying,” IEEE Commun. Lett., vol. 17, no. 3, pp. 479–482, Mar. 2013.Google Scholar
  63. 63.
    N. Zlatanov, D. Hranilovic, and J. S. Evans, “Buffer-Aided Relaying Improves Throughput of Full-Duplex Relay Networks with Fixed-Rate Transmissions,” IEEE Commun. Letters, vol., no. 99, pp., Sept. 2016.Google Scholar
  64. 64.
    B. Rankov, and A. Wittneben, “Achievable Rate Regions for the Two-Way Relay Channel,” in Proc. 2006 IEEE ISIT, Seattle, WA, USA.Google Scholar
  65. 65.
    R. Vaze, and R. W. Heath, “On the Capacity and Diversity-Multiplexing Tradeoff of the Two-Way Relay Channel,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4219–4234, July 2011.Google Scholar
  66. 66.
    T. Riihonen, S. Werner, and R. Wichman, “Comparison of Full-duplex and Half-duplex Modes with a Fixed Amplify-and-Forward Relay,” in Proc. 2009 IEEE WCNC, Budapest, Hungary.Google Scholar
  67. 67.
    T. Riihonen, S. Werner, and R. Wichman, “Hybrid Full-duplex/Half-duplex Relaying with Transmit Power Adaptation,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 3074–3085, Sept. 2011.Google Scholar
  68. 68.
    H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larsson, “Multipair Full-duplex Relaying with Massive Arrays and Linear Processing,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1721–1737, June 2014.Google Scholar
  69. 69.
    L. J. Rodriguez, N. H. Tran, and T. Le-Ngoc, “Optimal Power Allocation and Capacity of Full-Duplex AF Relaying under Residual Self-Interference,” IEEE Wireless Commun. Letters, vol. 3, no. 2, pp. 233–236, Apr. 2014.Google Scholar
  70. 70.
    T. Riihonen, S. Werner, and R. Wichman, “Mitigation of Loopback Self-interference in Full-duplex MIMO Relays,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5983–5993, Dec. 2011.Google Scholar
  71. 71.
    D. Ng, E. Lo, and R. Schober, “Dynamic Resource Allocation in MIMO-OFDMA Systems with Full-duplex and Hybrid Relaying,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1291–1304, May 2012.Google Scholar
  72. 72.
    B. Day, A. Margetts, D. Bliss, and P. Schniter, “Full-duplex MIMO Relaying: Achievable Rates under Limited Dynamic Range,” IEEE J. Sel. Areas Commun., vol. 30, no. 8, pp. 1541–1553, Sep. 2012Google Scholar
  73. 73.
    N. Shende, O. Gurbuz, and E. Erkip, “Half-Duplex or Full-Duplex Relaying: A Capacity Analysis under Self-Interference,” in Proc. 2013 IEEE CISS, Baltimore, MD, USA.Google Scholar
  74. 74.
    Q. Wang, Y. Dong, X. Xu, and X. Tao, “Outage Probability of Full-Duplex AF Relaying With Processing Delay and Residual Self-Interference,” IEEE Commun. Lett., vol. 19, no. 5, pp. 783–786, May 2015.Google Scholar
  75. 75.
    K. Yang, H. Cui, L. Song, and Y. Li, “Efficient Full-Duplex Relaying with Joint Antenna-Relay Selection and Self-Interference Suppression,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 4052–4062, Jul. 2015.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tho Le-Ngoc
    • 1
  • Khoa Tran Phan
    • 2
  1. 1.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Electrical and Computer Systems EngineeringMonash UniversityClaytonAustralia

Personalised recommendations