Skip to main content

Saliency Prediction for Action Recognition

  • Chapter
  • First Online:
Visual Content Indexing and Retrieval with Psycho-Visual Models

Part of the book series: Multimedia Systems and Applications ((MMSA))

  • 482 Accesses

Abstract

Despite all recent progress in computer vision, humans are still far superior to machines when it comes to the high-level understanding of complex dynamic scenes. The apparent ease of human perception and action cannot be explained by sheer neural computation power alone: Estimates put the transmission rate of the optic nerve at only about 10 MBit/s. One particular effective strategy to reduce the computational burden of vision in biological systems is the combination of attention with space-variant processing, where only subsets of the visual scene are processed in full detail at any one time. Here, we report on experiments that mimic eye movements and attention as a preprocessing step for state-of-the-art computer vision algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://lear.inrialpes.fr/~wang/improved_trajectories.

References

  1. Agtzidis, I., Startsev, M., Dorr, M.: Smooth pursuit detection based on multiple observers. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, ETRA’16, pp. 303–306. ACM, New York (2016)

    Google Scholar 

  2. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013)

    Article  Google Scholar 

  3. Buso, V., Benois-Pineau, J., González-Díaz, I.: Object recognition in egocentric videos with saliency-based non uniform sampling and variable resolution space for features selection. In: CVPR 2014 Egocentric (First-Person) Vision Workshop (2014)

    Google Scholar 

  4. Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., Torralba, A.: MIT Saliency Benchmark (2016). http://saliency.mit.edu

    Google Scholar 

  5. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different evaluation metrics tell us about saliency models? arXiv preprint arXiv:1604.03605 (2016)

    Google Scholar 

  6. Castelhano, M.S., Mack, M.L., Henderson, J.M.: Viewing task influences eye movement control during active scene perception. J. Vis. 9(3), 6 (2009)

    Article  Google Scholar 

  7. Cerf, M., Frady, P., Koch, C.: Faces and text attract gaze independent of the task: experimental data and computer model. J. Vis. 9(12:10), 1–15 (2009)

    Google Scholar 

  8. Chaabouni, S., Benois-Pineau, J., Zemmari, A., Amar, C.B.: Deep saliency: prediction of interestingness in video with CNN. In: Benois-Pineau, J., Le Callet, P. (eds.) Visual Content Indexing and Retrieval with Psycho-Visual Models. Springer, Cham (2017)

    Google Scholar 

  9. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 (2012)

    Google Scholar 

  10. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  11. Dorr, M., Martinetz, T., Gegenfurtner, K., Barth, E.: Variability of eye movements when viewing dynamic natural scenes. J. Vis. 10(10), 1–17 (2010)

    Article  Google Scholar 

  12. de Souza, C.R., Gaidon, A., Vig, E., López, A.M.: Sympathy for the details: Dense trajectories and hybrid classification architectures for action recognition. In: Proceedings of the European Conference on Computer Vision, pp. 697–716. Springer, Cham (2016)

    Google Scholar 

  13. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD Proceedings, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  14. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Dynamically encoded actions based on spacetime saliency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2755–2764 (2015)

    Google Scholar 

  15. Goldstein, R.B., Woods, R.L., Peli, E.: Where people look when watching movies: Do all viewers look at the same place? Comput. Biol. Med. 3(7), 957–64 (2007)

    Article  Google Scholar 

  16. Harel, J., Koch, C., Perona, P., et al.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, vol. 1, p. 5 (2006)

    Google Scholar 

  17. Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., Heeger, D.J.: Neurocinematics: the neuroscience of film. Projections 2(1), 1–26 (2008)

    Article  Google Scholar 

  18. Hooge, I., Holmqvist, K., Nyström, M.: The pupil is faster than the corneal reflection (CR): are video based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements? Vis. Res. 128, 6–18 (2016)

    Article  Google Scholar 

  19. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2106–2113 (2009)

    Google Scholar 

  20. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Book  Google Scholar 

  21. Koch, K., McLean, J., Segev, R., Freed, M.A., II, M.J.B., Balasubramanian, V., Sterling, P.: How much the eye tells the brain. Curr. Biol. 16, 1428–34 (2006)

    Google Scholar 

  22. Lan, Z., Lin, M., Li, X., Hauptmann, A.G., Raj, B.: Beyond Gaussian Pyramid: Multi-skip feature stacking for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 204–212 (2015)

    Google Scholar 

  23. Marat, S., Rahman, A., Pellerin, D., Guyader, N., Houzet, D.: Improving visual saliency by adding ‘face feature map’ and ‘center bias’. Cogn. Comput. 5(1), 63–75 (2013)

    Article  Google Scholar 

  24. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2929–2936 (2009)

    Google Scholar 

  25. Mathe, S., Sminchisescu, C.: Dynamic eye movement datasets and learnt saliency models for visual action recognition. In: Proceedings of the European Conference on Computer Vision, pp. 842–856. Springer, Berlin (2012)

    Google Scholar 

  26. Mathe, S., Sminchisescu, C.: Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1408–1424 (2015)

    Article  Google Scholar 

  27. Mital, P.K., Smith, T.J., Hill, R., Henderson, J.M.: Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn. Comput. 3(1), 5–24 (2011)

    Article  Google Scholar 

  28. Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition. Comput. Vis. Image Underst. 150(C), 109–125 (2016)

    Article  Google Scholar 

  29. Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation in natural images. Vis. Res. 45(8), 2397–2416 (2005)

    Article  Google Scholar 

  30. Prest, A., Schmid, C., Ferrari, V.: Weakly supervised learning of interactions between humans and objects. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 601–614 (2012)

    Article  Google Scholar 

  31. Sapienza, M., Cuzzolin, F., Torr, P.H.: Learning discriminative space-time actions from weakly labelled videos. In: Proceedings of the British Machine Vision Conference, vol. 2, p. 3 (2012)

    Google Scholar 

  32. Sapienza, M., Cuzzolin, F., Torr, P.H.: Learning discriminative space–time action parts from weakly labelled videos. Int. J. Comput. Vis. 110(1), 30–47 (2014)

    Article  Google Scholar 

  33. Shapovalova, N., Raptis, M., Sigal, L., Mori, G.: Action is in the eye of the beholder: eye-gaze driven model for spatio-temporal action localization. In: Advances in Neural Information Processing Systems, pp. 2409–2417 (2013)

    Google Scholar 

  34. Shi, F., Petriu, E., Laganiere, R.: Sampling strategies for real-time action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2595–2602 (2013)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  36. Smith, T.J., Mital, P.K.: Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. J. Vis. 13(8), 16–16 (2013)

    Article  Google Scholar 

  37. Spering, M., Schütz, A.C., Braun, D.I., Gegenfurtner, K.R.: Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion. J. Neurophysiol. 105(4), 1756–1767 (2011)

    Article  Google Scholar 

  38. Sultani, W., Saleemi, I.: Human action recognition across datasets by foreground-weighted histogram decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 764–771 (2014)

    Google Scholar 

  39. Tatler, B.W.: The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vis. 7(14), 1–17 (2007). http://journalofvision.org/7/14/4/

    Article  Google Scholar 

  40. Tseng, P.H., Carmi, R., Cameron, I.G.M., Munoz, D.P., Itti, L.: Quantifying center bias of observers in free viewing of dynamic natural scenes. J. Vis. 9(7), 1–16 (2009). http://journalofvision.org/9/7/4/

    Article  Google Scholar 

  41. Vig, E., Dorr, M., Cox, D.D.: Saliency-based selection of sparse descriptors for action recognition. In: Proceedings of International Conference on Image Processing, pp. 1405–1408 (2012)

    Google Scholar 

  42. Vig, E., Dorr, M., Cox, D.D.: Space-variant descriptor sampling for action recognition based on saliency and eye movements. In: Proceedings of the European Conference on Computer Vision. LNCS, vol. 7578, pp. 84–97 (2012)

    Google Scholar 

  43. Vig, E., Dorr, M., Martinetz, T., Barth, E.: Intrinsic dimensionality predicts the saliency of natural dynamic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1080–1091 (2012)

    Article  Google Scholar 

  44. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Robot. AI 2, 28 (2015)

    Article  Google Scholar 

  45. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision (2013)

    Book  Google Scholar 

  46. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE, New York (2011)

    Google Scholar 

  47. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314 (2015)

    Google Scholar 

  48. Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action recognition. Int. J. Comput. Vis. 119, 219–38 (2016)

    Article  MathSciNet  Google Scholar 

  49. von Wartburg, R., Wurtz, P., Pflugshaupt, T., Nyffeler, T., Lüthi, M., Müri, R.: Size matters: Saccades during scene perception. Perception 36, 355–65 (2007)

    Article  Google Scholar 

  50. Zhou, Y., Yu, H., Wang, S.: Feature sampling strategies for action recognition. arXiv preprint arXiv:1501.06993 (2015)

    Google Scholar 

  51. Zitnick, L., Dollar, P.: Edge boxes: locating object proposals from edges. In: Proceedings of the European Conference on Computer Vision (2014)

    Google Scholar 

Download references

Acknowledgements

Our research was supported by the Elite Network Bavaria, funded by the Bavarian State Ministry for Research and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dorr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dorr, M., Vig, E. (2017). Saliency Prediction for Action Recognition. In: Benois-Pineau, J., Le Callet, P. (eds) Visual Content Indexing and Retrieval with Psycho-Visual Models. Multimedia Systems and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-57687-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57687-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57686-2

  • Online ISBN: 978-3-319-57687-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics