MARTE/pCCSL: Modeling and Refining Stochastic Behaviors of CPSs with Probabilistic Logical Clocks

  • Dehui DuEmail author
  • Ping Huang
  • Kaiqiang Jiang
  • Frédéric Mallet
  • Mingrui Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10231)


Cyber-Physical Systems (CPSs) are networks of heterogeneous embedded systems immersed within a physical environment. Several ad-hoc frameworks and mathematical models have been studied to deal with challenging issues raised by CPSs. In this paper, we explore a more standard-based approach that relies on SysML/MARTE to capture different aspects of CPSs, including structure, behaviors, clock constraints, and non-functional properties. The novelty of our work lies in the use of logical clocks and MARTE/CCSL to drive and coordinate different models. Meanwhile, to capture stochastic behaviors of CPSs, we propose an extension of CCSL, called pCCSL, where logical clocks are adorned with stochastic properties. Possible variants are explored using Statistical Model Checking (SMC) via a transformation from the MARTE/pCCSL models into Stochastic Hybrid Automata. The whole process is illustrated through a case study of energy-aware building, in which the system is modeled by SysML/MARTE/pCCSL and different variants are explored through SMC to help expose the best alternative solutions.


Cyber-physical systems MARTE pCCSL Stochastic hybrid automata Energy-aware building Statistical model checking 



This work is partly supported by NSFC under Grant No. 61472140,61170084, NSF of Shanghai under Grant No. 14ZR1412500, and the Danish National Research Foundation Grant No. 61361136002.


  1. 1.
    André, C.: Syntax and semantics of the Clock Constraint Specification Language (CCSL). Research Report 6925, INRIA, May 2009.
  2. 2.
    Arnold, A., Point, G., Griffault, A., Rauzy, A.: The altarica formalism for describing concurrent systems. Fundam. Inform. 40(2–3), 109–124 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone, R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)CrossRefGoogle Scholar
  4. 4.
    Berardinelli, L., Bernardi, S., Cortellessa, V., Merseguer, J.: UML profiles for non-functional properties at work: analyzing reliability, availability and performance. In: 2nd International Workshop on Non-functional System Properties in Domain Specific Modeling Languages (MoDELS/NFPinDSML), CEUR Workshop Proceedings, vol. 553. (2009).
  5. 5.
    Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE. Softw. Syst. Model. 10(3), 313–336 (2011). CrossRefGoogle Scholar
  6. 6.
    Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.: A review of statistical model checking pitfalls on real-time stochastic models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 177–192. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45231-8_13 Google Scholar
  7. 7.
    Boudjadar, A.J., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U., Skou, A.: Schedulability and energy efficiency for multi-core hierarchical scheduling systems. In: ERTS (2014).
  8. 8.
    Boutekkouk, F., Benmohammed, M., Bilavarn, S., Auguin, M.: UML2.0 profiles for embedded systems and systems on a chip (SOCs). J. Object Technol. 8(1), 135–157 (2009)CrossRefGoogle Scholar
  9. 9.
    Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., Kounev, S.: Quantitative evaluation of model-driven performance analysis and simulation of component-based architectures. IEEE Trans. Softw. Eng. 41(2), 157–175 (2015). CrossRefGoogle Scholar
  10. 10.
    Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A., Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. arXiv preprint arXiv:1207.1272 (2012)
  11. 11.
    David, A., Du, D., Larsen, K.G., Mikučionis, M., Skou, A.: An evaluation framework for energy aware buildings using statistical model checking. Sci. China Inf. Sci. 55(12), 2694–2707 (2012)CrossRefGoogle Scholar
  12. 12.
    David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.: Statistical model checker for biological systems. Int. J. Softw. Tools Technol. Transf. 17, 351–367 (2014)CrossRefGoogle Scholar
  13. 13.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Vliet, J., Wang, Z.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24310-3_7 CrossRefGoogle Scholar
  14. 14.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_27 CrossRefGoogle Scholar
  15. 15.
    DeAntoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30561-0_4 CrossRefGoogle Scholar
  16. 16.
    Demathieu, S., Thomas, F., André, C., Gérard, S., Terrier, F.: First experiments using the UML profile for MARTE. In: 11th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC), pp. 50–57. IEEE (2008).
  17. 17.
    Deshpande, A., Godbole, D., Göllü, A., Varaiya, P.: Design and evaluation tools for automated highway systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 138–148. Springer, Heidelberg (1996). doi: 10.1007/BFb0020941 CrossRefGoogle Scholar
  18. 18.
    Espinoza, H., Dubois, H., Gérard, S., Medina, J., Petriu, D.C., Woodside, M.: Annotating UML models with non-functional properties for quantitative analysis. In: Bruel, J.-M. (ed.) MODELS 2005. LNCS, vol. 3844, pp. 79–90. Springer, Heidelberg (2006). doi: 10.1007/11663430_9 CrossRefGoogle Scholar
  19. 19.
    Fang, H., Shi, J., Zhu, H., Guo, J., Larsen, K.G., David, A.: Formal verification and simulation for platform screen doors and collision avoidance in subway control systems. STTT 16(4), 339–361 (2014)CrossRefGoogle Scholar
  20. 20.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24743-2_22 CrossRefGoogle Scholar
  21. 21.
    Iqbal, M.Z., Ali, S., Yue, T., Briand, L.: Experiences of applying UML/MARTE on three industrial projects. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 642–658. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33666-9_41 CrossRefGoogle Scholar
  22. 22.
    Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28756-5_14 CrossRefGoogle Scholar
  23. 23.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of computation. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 17(12), 1217–1229 (1998)CrossRefGoogle Scholar
  25. 25.
    Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2008), pp. 363–369. IEEE Computer Society, May 2008.
  26. 26.
    Lee, E.A.: The past, present and future of cyber-physical systems: a focus on models. Sensors 15(3), 4837–4869 (2015). CrossRefGoogle Scholar
  27. 27.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16612-9_11 CrossRefGoogle Scholar
  28. 28.
    Liu, J., Liu, Z., He, J., Mallet, F., Ding, Z.: Hybrid MARTE statecharts. Front. Comput. Sci. 7(1), 95–108 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, Z., Liu, J., He, J., Ding, Z.: Spatio-temporal UML statechart for cyber-physical systems. In: 17th IEEE International Conference on Engineering of Complex Computer Systems, ICECCS, pp. 137–146. IEEE Computer Society (2012).
  30. 30.
    Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci. Comput. Program. 106, 78–92 (2015). CrossRefGoogle Scholar
  31. 31.
    Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II., New York (2014)Google Scholar
  32. 32.
    Selic, B., Gerard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE. Elsevier, Amsterdam (2013)Google Scholar
  33. 33.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27813-9_16 CrossRefGoogle Scholar
  34. 34.
    Shorin, D., Zimmermann, A., Maciel, P.: Transforming UML state machines into stochastic petri nets for energy consumption estimation of embedded systems. Sustain. Internet ICT Sustain. (SustainIT) 2012, 1–6 (2012)Google Scholar
  35. 35.
    Shorin, D., Zimmermann, A.: Formal description of an approach for power consumption estimation of embedded systems. In: 24th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS, pp. 1–10 (2014).
  36. 36.
    Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40561-7_1 CrossRefGoogle Scholar
  37. 37.
    Tomlin, C., Pappas, G., Lygeros, J., Godbole, D., Sastry, S.: Hybrid control models of next generation air traffic management. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 378–404. Springer, Heidelberg (1997). doi: 10.1007/BFb0031570 CrossRefGoogle Scholar
  38. 38.
    Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML activity diagrams annotated with the MARTE profile. In: Avritzer, A., Weyuker, E.J., Woodside, C.M. (eds.) 7th International Workshop on Software and Performance, WOSP 2008, pp. 67–78. ACM (2008).
  39. 39.
    Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang, Y., Mallet, F., Chen, Y.: Timed automata semantics of spatial-temporal consistency language STeC. In: Theoretical Aspects of Software Engineering Conference, TASE, pp. 201–208. IEEE (2014).
  41. 41.
    Zou, J., Matic, S., Lee, E.A., Feng, T.H., Derler, P.: Execution strategies for PTIDES, a programming model for distributed embedded systems. In: 15th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS, pp. 77–86. IEEE Computer Society (2009).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dehui Du
    • 1
    Email author
  • Ping Huang
    • 1
  • Kaiqiang Jiang
    • 1
  • Frédéric Mallet
    • 1
    • 2
    • 3
  • Mingrui Yang
    • 1
  1. 1.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina
  2. 2.University of Nice Sophia Antipolis, I3S, UMR 7271 CNRSNiceFrance
  3. 3.INRIA Sophia Antipolis MéditerranéeBiotFrance

Personalised recommendations