Checking Multi-view Consistency of Discrete Systems with Respect to Periodic Sampling Abstractions

  • Maria PittouEmail author
  • Stavros Tripakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10231)


In multi-view modeling the system under development is described by distinct models, called views, which capture different perspectives of the system. Inevitably, possible overlaps of the views may give rise to inconsistencies. Hence, it becomes essential to check for consistency among the separate views. Existing work checks view consistency of discrete systems (transition systems or finite automata) with respect to two types of abstraction functions: (1) projections of state variables, (2) projections of an alphabet of events onto a subalphabet. In this paper, we study view consistency with respect to timing abstractions, specifically, periodic sampling. We define the multi-view consistency problem for periodic sampling abstractions, and provide an algorithm for the problem.


Discrete System Finite Automaton Boolean Expression Deterministic Finite Automaton View Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  2. 2.
    Broman, D., Lee, E.A., Tripakis, S., Törngren, M.: Viewpoints, formalisms, languages, and tools for cyber-physical systems. In: 6th International Workshop on Multi-Paradigm Modeling (MPM 2012) (2012)Google Scholar
  3. 3.
    Getir, S., Grunske, L., Bernasko, C.K., Käfer, V., Sanwald, T., Tichy, M.: CoWolf – A generic framework for multi-view co-evolution and evaluation of models. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 34–40. Springer, Cham (2015). doi: 10.1007/978-3-319-21155-8_3 CrossRefGoogle Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, New York (1990)zbMATHGoogle Scholar
  5. 5.
    Maoz, S., Ringert, J.O., Rumpe, B.: Semantically configurable consistency analysis for class and object diagrams. CoRR, abs/1409.2313 (2014)Google Scholar
  6. 6.
    Persson, M., Törngren, M., Qamar, A., Westman, J., Biehl, M., Tripakis, S., Vangheluwe, H., Denil, J.: A characterization of integrated multi-view modeling in the context of embedded and cyber-physical systems. In: EMSOFT, pp. 10:1–10:10. IEEE (2013)Google Scholar
  7. 7.
    Rajhans, A., Krogh, B.H.: Heterogeneous verification of cyber-physical systems using behavior relations. In: HSCC 2012, pp. 35–44. ACM (2012)Google Scholar
  8. 8.
    Rajhans, A., Krogh, B.H.: Compositional heterogeneous abstraction. In: HSCC 2013, pp. 253–262. ACM (2013)Google Scholar
  9. 9.
    Rasch, H., Wehrheim, H.: Checking consistency in UML diagrams: Classes and state machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 229–243. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39958-2_16 CrossRefGoogle Scholar
  10. 10.
    Reineke, J., Stergiou, C., Tripakis, S.: Basic problems in multi-view modeling. Submitted journal version of [11]Google Scholar
  11. 11.
    Reineke, J., Tripakis, S.: Basic problems in multi-view modeling. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 217–232. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_15 CrossRefGoogle Scholar
  12. 12.
    Shah, A.A., Kerzhner, A.A., Schaefer, D., Paredis, C.J.J.: Multi-view modeling to support embedded systems engineering in SysML. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven Engineering. LNCS, vol. 5765, pp. 580–601. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17322-6_25 CrossRefGoogle Scholar
  13. 13.
    Tripakis, S.: Compositionality in the science of system design. Proc. IEEE 104(5), 960–970 (2016)CrossRefGoogle Scholar
  14. 14.
    Hanxleden, R., Lee, E.A., Motika, C., Fuhrmann, H.: Multi-view modeling and pragmatics in 2020. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp. 209–223. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34059-8_11 CrossRefGoogle Scholar
  15. 15.
    Zhao, X., Long, Q., Qiu, Z.: Model checking dynamic UML consistency. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 440–459. Springer, Heidelberg (2006). doi: 10.1007/11901433_24 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Aalto UniversityEspooFinland
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations