Reasoning About Connectors in Coq

  • Xiyue Zhang
  • Weijiang Hong
  • Yi Li
  • Meng SunEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10231)


Reo is a channel-based exogenous coordination model in which complex coordinators, called connectors, are compositionally built out of simpler ones. In this paper, we present a new approach to model connectors in Coq which is a proof assistant based on higher-order logic and \(\lambda \)-calculus. The model reflects the original structure of connectors simply and clearly. In our framework, basic connectors (channels) are interpreted as axioms and composition operations are specified as inference rules. Furthermore, connectors are interpreted as logical predicates which describe the relation between inputs and outputs. With such definitions provided, connector properties, as well as equivalence and refinement relations between different connectors, can be naturally formalized as goals in Coq and easily proved using pre-defined tactics.


Coordination language Reo Coq Reasoning 



The work was partially supported by the National Natural Science Foundation of China under grant no. 61532019, 61202069 and 61272160.


  1. 1.
    Package of source files.
  2. 2.
    Aichernig, B.K., Arbab, F., Astefanoaei, L., de Boer, F.S., Sun, M., Rutten, J.: Fault-based test case generation for component connectors. In: Proceedings of TASE 2009, pp. 147–154. IEEE Computer Society (2009)Google Scholar
  3. 3.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-40020-2_2 CrossRefGoogle Scholar
  5. 5.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and verification of systems with exogenous coordination using vereofy. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16561-0_15 CrossRefGoogle Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer, Heidelberg (2006). doi: 10.1007/11925040_2 CrossRefGoogle Scholar
  8. 8.
    de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge University Press, New York (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huet, G., Kahn, G., Paulin-Mohring, C.: The coq proof assistant a tutorial. Rapport Technique, 178 (1997)Google Scholar
  10. 10.
    Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Upper Saddle River (1990)zbMATHGoogle Scholar
  11. 11.
    Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comp. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  12. 12.
    Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and analysis of Reo connectors using alloy. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68265-3_11 CrossRefGoogle Scholar
  13. 13.
    Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component connectors. Sci. Comput. Program. 74(9), 688–701 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: a framework for model-checking dataflow in service compositions. Formal Aspects Comput. 24, 187–216 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, Y., Sun, M.: Modeling and verification of component connectors in Coq. Sci. Comput. Program. 113(3), 285–301 (2015)CrossRefGoogle Scholar
  16. 16.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River (1998)Google Scholar
  17. 17.
    Sun, M.: Connectors as designs: the time dimension. In: Proceedings of TASE 2012, pp. 201–208. IEEE Computer Society (2012)Google Scholar
  18. 18.
    Sun, M., Arbab, F.: Web services choreography and orchestration in reo and constraint automata. In: Proceedings of SAC 2007, pp. 346–353. ACM (2007)Google Scholar
  19. 19.
    Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.: Connectors as designs: modeling, refinement and test case generation. Sci. Comput. Program. 77(7–8), 799–822 (2012)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Informatics and LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations