Formal Models and Analysis for Self-adaptive Cyber-physical Systems

(Extended Abstract)
  • Holger GieseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10231)


In this extended abstract, we will analyze the current challenges for the envisioned Self-Adaptive CPS. In addition, we will outline our results to approach these challenges with SMARTSOS [10] a generic approach based on extensions of graph transformation systems employing open and adaptive collaborations and models at runtime for trustworthy self-adaptation, self-organization, and evolution of the individual systems and the system-of-systems level taking the independent development, operation, management, and evolution of these systems into account.


Model Check Probabilistic Behavior Runtime Model Graph Transformation System Dynamic Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Achatz, R.E.: Keynote: optimizing the software development in industry (exemplified for Siemens). In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering 2005, March 8-11, 2005 in Essen. LNI 64 GI (2005). (German)Google Scholar
  2. 2.
    Brooks, C., Cheng, C., Feng, T.H., Lee, E.A., von Hanxleden, R.: Model engineering using multimodeling. In: 1st International Workshop on Model Co-Evolution and Consistency Management (MCCM 2008), September 2008Google Scholar
  3. 3.
    Broy, M., Cengarle, M.V., Geisberger, E.: Cyber-physical systems: imminent challenges. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp. 1–28. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34059-8_1 CrossRefGoogle Scholar
  4. 4.
    Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification for systems with dynamic structural adaptation. In: Proceedings of the 28th International Conference on Software Engineering (ICSE), Shanghai, China. ACM Press (2006)Google Scholar
  5. 5.
    Becker, B., Giese, H.: On safe service-oriented real-time coordination for autonomous vehicles. In: Proceedings of 11th International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC), pp. 203–210. IEEE Computer Society Press, 5–7 May 2008Google Scholar
  6. 6.
    Becker, B., Giese, H.: Cyber-physical systems with dynamic structure: towards modeling and verification of inductive invariants. Technical report, 64, Hasso Plattner Institute at the University of Potsdam, Germany (2012)Google Scholar
  7. 7.
    Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.: Tool support for the design of self-optimizing mechatronic multi-agent systems. Int. J. Softw. Tools Technol. Transf. (STTT) 10(3), 207–222 (2008). Springer VerlagCrossRefGoogle Scholar
  8. 8.
    Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02161-9_1 CrossRefGoogle Scholar
  9. 9.
    Giese, H., Henkler, S., Hirsch, M.: A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems. Trans. Soc. Model. Simul. Int. SIMULATION 87(9), 775–808 (2011)CrossRefGoogle Scholar
  10. 10.
    Giese, H., Vogel, T., Wätzoldt, S.: Towards smart systems of systems. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 1–29. Springer, Cham (2015). doi: 10.1007/978-3-319-24644-4_1 CrossRefGoogle Scholar
  11. 11.
    Giese, H., Schäfer, W.: Model-driven development of safe self-optimizing mechatronic systems with MechatronicUML. In: Cámara, J., Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 152–186. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36249-1_6 CrossRefGoogle Scholar
  12. 12.
    Krause, C., Giese, H.: Probabilistic graph transformation systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 311–325. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33654-6_21 CrossRefGoogle Scholar
  13. 13.
    Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. 1(4), 267–284 (1998). John Wiley - Sons IncCrossRefGoogle Scholar
  14. 14.
    Mosterman, P.J., Vangheluwe, H.: Computer automated multi-paradigm modeling in control system design. IEEE Trans. Control Syst. Technol. 12, 65–70 (2000)Google Scholar
  15. 15.
    Northrop, L., et al.: Ultra-Large-Scale Systems: The Software Challenge of the Future. Software Engineering Institute, Carnegie Mellon University, Pittsburgh (2006)Google Scholar
  16. 16.
    Kounev, S., et al.: The notion of self-aware computing. In: Kounev, S., Kephart, J.O., Milenkoski, A., Zhu, X. (eds.) Self-Aware Computing Systems, pp. 3–16. Springer, Cham (2017). doi: 10.1007/978-3-319-47474-8_1 CrossRefGoogle Scholar
  17. 17.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, River Edge (1997)zbMATHGoogle Scholar
  18. 18.
    Scharnhorst, T., Heinecke, H., Schnelle, K.-P., Fennel, H., Bortolazzi, J., Lundh, L., Heitkämper, P., Leflour, J., Maté, J.-L., Nishikawa, K.: AUTOSAR - challenges and achievements 2005. In: Proceedings of the 12th International Conference Electronics Systems for Vehicles, pp. 395–408, Baden-Baden, Germany, October 2005Google Scholar
  19. 19.
    Sztipanovits, J.: Model integration and cyber physical systems: a semantics perspective. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 1–1. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21437-0_1 CrossRefGoogle Scholar
  20. 20.
    Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., Goodwine, B., Baras, J., Wang, S.: Toward a science of cyber-physical system integration. Proc. IEEE 100(1), 29–44 (2012)CrossRefGoogle Scholar
  21. 21.
    Valerdi, R., Axelband, E., Baehren, T., Boehm, B., Dorenbos, D., Jackson, S., Madni, A., Nadler, G., Robitaille, P., Settles, S.: A research agenda for systems of systems architecting. Int. J. Syst. Syst. Eng. 1(1–2), 171–188 (2008)CrossRefGoogle Scholar
  22. 22.
    Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-driven architectural monitoring and adaptation for autonomic systems. In: Proceedings of the 6th International Conference on Autonomic Computing and Communications (ICAC 2009), Barcelona, Spain. ACM, 15–19 June 2009Google Scholar
  23. 23.
    Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental model synchronization for efficient run-time monitoring. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12261-3_13 CrossRefGoogle Scholar
  24. 24.
    Vogel, T., Giese, H.: A language for feedback loops in self-adaptive systems: executable runtime megamodels. In: Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2012), pp. 129–138. IEEE Computer Society, June 2012Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations