Skip to main content

A Matter of Chemistry

  • Chapter
  • First Online:
Book cover Unhappiness, Sadness and 'Depression'

Abstract

This chapter discusses how, when antidepressants were discovered, neurotransmitters and the mechanism of neurotransmission in the brain were also being discovered. In the laboratory, experimental models in vitro showed that tricyclic antidepressants inhibited the synaptic reuptake of norepinephrine and serotonin . This finding gave origin to the seductive theory that depression was the result of a chemical unbalance, with reduced concentrations of the neurotransmitters in the brain synapses, which were corrected by the drug. With the introduction of selective serotonin reuptake inhibitors such as Prozac the theory was refocused specifically on serotonin. Yet no direct evidence has ever been provided regarding in vivo conditions in real patients. Additionally, clinical evidence such as the latency of the response and the lack of activity in about one-third of patients treated remains unexplained.

A specialist is a man who knows more and more about less and less.

William J. Mayo

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • aan het Rot, M., Mathew, S. J., & Charney, D. S. (2009). Neurobiological mechanisms in major depressive disorder. Canadian Medical Association Journal, 180(3), 305–313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Angell, M. (2004). The truth about the drug companies: How they deceive us and what to do about it. New York: Random House.

    Google Scholar 

  • Baughman, F. (2006). There is no such thing as a psychiatric disorder/ disease/chemical imbalance. PLoS Med, 3(7), e318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumeister, A. A., Hawkins, M. F., & Uzelac, S. M. (2003). The myth of the reserpine—Induced depression: Role in the historical development of the monoamine hypothesis. Journal of the History of Neurosciences, 12(2), 207–220.

    Article  Google Scholar 

  • Beers, M. H., & Passman, L. J. (1990). Antihypertensive medications and depression. Drugs, 40(6), 792–799.

    Article  PubMed  Google Scholar 

  • Belmaker, R. H., & Agam, G. (2008). Major depressive disorder. New England Journal of Medicine, 358, 55–68.

    Article  PubMed  Google Scholar 

  • Benarroch, E. E. (2009). The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology, 73(20), 1699–1704.

    Article  PubMed  Google Scholar 

  • Bennett, M. R. (1998). Monoaminergic synapses and schizophrenia: 45 years of neuroleptics. Journal of Psychopharmacology, 12, 289–304.

    Article  PubMed  Google Scholar 

  • Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual Reviews of Medicine, 60, 355–366.

    Article  Google Scholar 

  • Berton, O., & Nestler, E. J. (2006). New approaches to antidepressant drug discovery: Beyond monoamines. Nature Reviews Neuroscience, 7, 137–151.

    Article  PubMed  Google Scholar 

  • Bowers, M. B. (1974). Lumbar CSF 5-hydroxyindoleacetic acid and homovanillic acid in affective syndromes. Journal of Nervous and Mental Diseases, 158(5), 325–330.

    Article  Google Scholar 

  • Bowers, M. B., Heninger, G. R., & Gerbode, F. (1969). Cerebrospinal fluid 5-hydroxyindoleactiic acid and homovanillic acid in psychiatric patients. International Journal of Neuropharmacology, 8(3), 255–262.

    Article  PubMed  Google Scholar 

  • Brink, C. B., Harvey, B. H., & Brand, L. (2006). Tianeptine: A novel atypical antidepressant that may provide new insights into the biomolecular basis of depression. Recent Patents on CNS Drug Discovery, 1(1), 29–41.

    Article  PubMed  Google Scholar 

  • Castrén, E. (2005). Is mood chemistry? Nature Reviews Neurosciences, 6(3), 241–246.

    Article  Google Scholar 

  • Castrén, E., & Rantamaki, T. (2010). The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental Neurobiology, 70(5), 289–297.

    Article  PubMed  Google Scholar 

  • Cipriani, A., Furukawa, T. A., Salanti, G., Geddes, J. R., Higgins, J. P., Churchill, R., Watanabe, N., Nakagawa, A., Omori, I. M., McGuire, H., Tansella, M., & Barbui, C. (2009). Comparative efficacy and acceptability of 12 new-generation antidepressants: A multiple-treatments meta-analysis. Lancet, 73, 746–758.

    Google Scholar 

  • Davies, D. L., & Shepherd, M. (1955). Reserpine in the treatment of anxious and depressed patients. Lancet, 269(6881), 117–120.

    Article  PubMed  Google Scholar 

  • Delgado, P., & Moreno, F. (2000). Role of norepinephrine in depression. Journal of Clinical Psychiatry, 61(1), 5–12.

    PubMed  Google Scholar 

  • Delgado, P. L., Price, L. H., Miller, H. L., Salomon, R. M., Aghajanian, G. K., Heninger, G. R., & Charney D. S. (1994). Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug-free depressed patients. Archives of General Psychiatry, 51(11), 865–874.

    Google Scholar 

  • Dubvosky, S., Davies, R., & Dubvosky, A. (2003). Mood disorders. In R. Yudofsky & S. Hales (Eds.), The american psychiatric textbook of clinical psychiatry (pp. 439–542). Washington, DC: American Psychiatric Press.

    Google Scholar 

  • Eyding, D., Lelgemann, M., Grouven, U., Härter, M., Kromp, M., Kaiser, T.,  Kerekes, M. F., Gerken, M., & Wieseler, B. (2010). Reboxetine for acute treatment of major depression: Systematic review and meta-analysis of published and unpublished placebo and selective serotonin reuptake inhibitor controlled trials. British Medical Journal, 341, c4737.

    Google Scholar 

  • Glowinski, J., & Axelrod, J. (1964). Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature, 204, 1318–1319.

    Article  PubMed  Google Scholar 

  • Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293–319.

    Article  PubMed  Google Scholar 

  • Hasler, G. (2010). Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry, 9, 155–161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Healy, D. (2004). Let them eat prozac: The unhealthy relationship between the pharmaceutical companies and depression. New York: New York University Press.

    Google Scholar 

  • Herzberg, D. (2009). Happy pills in America: From miltown to prozac. Baltimore: John Hopkins University Press.

    Google Scholar 

  • Horgan, J. (1999). The undiscovered mind: How the human brain defies replication, medication, and explanation. New York: Free Press.

    Google Scholar 

  • Horwitz, A. V., & Wakefield, J. C. (2012). All we have to fear: Psychiatry’s transformation of natural anxieties into mental disorders. Oxford: Oxford University Press.

    Google Scholar 

  • Humble, M. (2000). Noradrenaline and serotonin reuptake inhibition as clinical principles: A review of antidepressant efficacy. Acta Psychiatrica Scandinavica, 101(Suppl. 402), 28–36.

    Article  Google Scholar 

  • Ig Nobel Prize. (2000). May we recommend—The science of romantic love. http://www.improb.com/news/2002/feb/romantic.html. Accessed 15 April, 2015.

  • Karch, S. B. (1999). Cocaine: History, use, abuse. Journal of the Royal Society of Medicine, 92(8), 393–397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacasse, J. R., & Leo, J. (2005). Serotonin and depression: A disconnect between the advertisements and the scientific literature. PLoS Med, 2(12), e392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahti, R. A., & Maickel, R. P. (1971). The tricyclic antidepressants-inhibition of norepinephrine uptake as related to potentiation of norepinephrine and clinical efficacy. Biochemical Pharmacology, 20(2), 482–486.

    Article  PubMed  Google Scholar 

  • Leo, J., & Lacasse, J. R. (2008). The media and the chemical imbalance theory of depression. Society, 45(1), 35–45.

    Article  Google Scholar 

  • Leucht, C., Huhn, M., & Leucht, S. (2012). Amitriptyline versus placebo for major depressive disorder. Cochrane Database of Systematic Reviews, (2). doi: 10.1002/14651858.

  • López-Muñoz, F., & Alamo, C. (2009a). Historical evolution of the neurotransmission concept. Journal of Neural Transmission, 116(5), 515–533.

    Article  PubMed  Google Scholar 

  • López-Muñoz, F., & Alamo, C. (2009b). Monoaminergic neurotransmission: The history of the discovery of antidepressants from 1950s until today. Current Pharmaceutical Design, 15(14), 1563–1586.

    Article  PubMed  Google Scholar 

  • Maas, J. W., Koslow, S. H., Katz, M. M., et al. (1984). Pretreatment neurotransmitter metabolite levels and response to tricyclic antidepressant drugs. American Journal of Psychiatry, 14(10), 1159–1171.

    Google Scholar 

  • Magarian, G. J. (1991). Reserpine: A relic from the past or a neglected drug of the present for achieving cost containment in treating hypertension? Journal of General and Internal Medicine, 6(6), 561–572.

    Article  Google Scholar 

  • Mahara, I., Bambicoc, F. C., Mechawara, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38, 173–192.

    Article  Google Scholar 

  • Manji, H. K., Drevets, W. C., & Charney, D. S. (2001). The cellular neurobiology of depression. Nature Medicine, 7, 541–547.

    Article  PubMed  Google Scholar 

  • Marazziti, D., Akiskal, H. S., Rossi, A., & Cassano, G. B. (1999). Alteration of the platelet serotonin transporter in romantic love. Psychological Medicine, 29(3), 741–745.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., Chattarji, S., Diamond, D. M., Jay, T. M., Reagan, L. P., Svenningsson, P., & Fuchs, E. (2010). The neurobiological properties of tianeptine (Stablon): From monoamine hypothesis to glutamatergic modulation. Molecular Psychiatry, 15(3), 237–249.

    Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (1980). Chemistry of mood and emotion. Annual Reviews of Psychology, 31, 273–307.

    Article  Google Scholar 

  • Mendels, J., & Frazer, A. (1974). Brain biogenic amine depletion and mood. Archives of Genral Psychiatry, 30(4), 447–451.

    Article  Google Scholar 

  • Moncrieff, J. (2007). The myth of the chemical cure: A critique of psychiatric drug treatment. Basingstoke: Palgrave Macmillan.

    Book  Google Scholar 

  • Mulinari, S. (2012). Monoamine theories of depression: Historical impact on biomedical research. Journal of the History of the Neurosciences: Basic and Clinical Perspectives, 21(4), 366–392.

    Article  Google Scholar 

  • Nestler, E.J., Barrot, M., DiLeone, R.J. Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of Depression. Neuron, 34(1): 13–25.

    Article  Google Scholar 

  • Nobel Prize in Physiology and Medicine. (1936).http://www.nobelprize.org/nobel_prizes/medicine/laureates/1936/. Accessed 3 February, 2015.

  • Nobel Prize in Physiology and Medicine. (1970). http://www.nobelprize.org/nobel_prizes/medicine/laureates/1970/. Accessed March 3, 2015.

  • Papeschi, R., & McClure, D. J. (1971). Homovanillic and 5-hydroxyindoleacetic acid in cerebrospinal fluid of depressed patients. Archives of General Psychiatry, 25(4), 354–358.

    Article  PubMed  Google Scholar 

  • Paykel, E. S., Myers, J. K., Dienelt, M. N., Klerman, G. L., Lindenthal, J. J., & Pepper, M. P. (1969). Life events and depression: A controlled study. Archives of General Psychiatry, 21(6), 753–760.

    Article  PubMed  Google Scholar 

  • Racagni, G., & Popoli, M. (2008). Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues in Clinical Neurosciences, 10(4), 385–400.

    Google Scholar 

  • Rasmussen, R. (2008). A quantitative and qualitative retrospective with implications for the present America’s first amphetamine epidemic 1929–1971. American Journal of Public Health, 98(6), 974–985.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravindran, A. V., & da Silva, T. L. (2013). Review complementary and alternative therapies as add-onto pharmacotherapy for mood and anxiety disorders: A systematic review. Journal of Affective Disorders, 150(3), 707–719.

    Article  PubMed  Google Scholar 

  • Ross, S. B., & Renyi, A. L. (1967). Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. European Journal of Pharmacology, 2(3), 181–186.

    Article  PubMed  Google Scholar 

  • Ross, S. B., & Renyi, A. L. (1969). Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. European Journal of Pharmacology, 7(3), 270–277.

    Article  PubMed  Google Scholar 

  • Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I., & Partilla J. S. (2001). Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse, 39(1), 32–41.

    Google Scholar 

  • Ruetsch, Y. A., Boni, T., & Borgeat, A. (2001). From cocaine to ropivacaine: The history of local anesthetic drugs. Current Topics in Medicinal Chemistry, 1(3), 175–182.

    Article  PubMed  Google Scholar 

  • Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: A review of the supportive evidence. American Journal of Psychiatry, 122(5), 509–522.

    Article  PubMed  Google Scholar 

  • Slattery, D. A., Hudson, A. L., & Nutt, D. J. (2004). Invited review: The evolution of antidepressant mechanisms. Fundamental & Clinical Pharmacology, 18(1), 1–21.

    Article  Google Scholar 

  • Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology, 75(6), 406–433.

    Article  PubMed  Google Scholar 

  • Svensson, T. H. (2000). Brain noradrenaline and the mechanisms of action of antidepressant drugs. Acta Psychiatrica Scandinavica, 402(Suppl. 2000) 18–27.

    Article  Google Scholar 

  • Valenstein, E. S. (1998). Blaming the brain: The truth about drugs and mental health. New York: Free Press.

    Google Scholar 

  • Willner, P., Scheel-Krügerb, J., & Belzung, C. (2013). The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, 37(10 Part 1): 2331–2371.

    Google Scholar 

  • Wong, D. T., Perry, K. W., & Bymaster, F. P. (2005). The discovery of fluoxetine hydrochloride (Prozac). Nature Reviews Drug Discovery, 4, 764–774.

    PubMed  Google Scholar 

  • Wrobel, S. (2007). Science, serotonin, and sadness: The biology of antidepressants. The FASEB Journal, 21(13), 3404–3417.

    Article  PubMed  Google Scholar 

  • Young, L. J. (2009). Being human: Love: Neuroscience reveals all. Nature, 457(7226), 148. doi:10.1038/457148a.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Giraldi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Giraldi, T. (2017). A Matter of Chemistry. In: Unhappiness, Sadness and 'Depression'. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-57657-2_9

Download citation

Publish with us

Policies and ethics