Skip to main content

Immune Functions and Properties of Resident Cells in the Heart and Cardiovascular System: Pericytes

  • Chapter
  • First Online:
The Immunology of Cardiovascular Homeostasis and Pathology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1003))

Abstract

This chapter provides an introduction to pericyte physiology. Pericytes are smooth muscle-like cells that wrap around vessels and arterioles. Here, we discuss their structure, function, contractility and interaction with other cells including immune cells and finally their role in pathological processes. Additionally, we discuss recent studies describing pericyte populations in the heart and their potential as targets for future cardiac therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 2005;7(4):452–64. doi:10.1215/S1152851705000232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirschi K, D'amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996;32(4):687–98.

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy-Lydon TM, Crawford C, Wildman SP, Peppiatt-Wildman CM. Renal pericytes: regulators of medullary blood flow. Acta Physiol. 2012;207(2):212–25. doi:10.1111/apha.12026.

    Article  Google Scholar 

  4. Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7:1031.

    CAS  PubMed  Google Scholar 

  5. Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006;26(5):613–24. doi:10.1038/sj.jcbfm.9600272.

    Article  CAS  PubMed  Google Scholar 

  6. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4. doi:10.1038/nature05193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herman IM, D'amore PA. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985;101:43.

    Article  CAS  PubMed  Google Scholar 

  8. Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol. 1985;100(5):1379–86.

    Article  CAS  PubMed  Google Scholar 

  9. Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth-muscle type alpha-actin. J Cell Biol. 1991;113(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  10. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. doi:10.1016/j.devcel.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  11. Crawford C, Kennedy-Lydon T, Sprott C, Desai T. An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Physiol. 2012;120:17. doi:10.1159/000339110.

    Article  Google Scholar 

  12. Crawford C, Kennedy-Lydon TM, Callaghan H, Sprott C, Simmons RL, Sawbridge L, Syme HM, Unwin RJ, Wildman SSP, Peppiatt-Wildman CM. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol (Oxf). 2011;202(3):241–51. doi:10.1111/j.1748-1716.2011.02310.x.

    Article  CAS  Google Scholar 

  13. Kennedy-Lydon T, Crawford C, Wildman SS, Peppiatt-Wildman CM. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes. Am J Physiol Renal Physiol. 2015;309(7):F648–57. doi:10.1152/ajprenal.00199.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rucker HK, Wynder HJ, Thomas WE. Cellular mechanisms of CNS pericytes. Brain Res Bull. 2000;51(5):363–9.

    Article  CAS  PubMed  Google Scholar 

  15. Park F, Mattson DL, Roberts LA, Cowley AW. Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am J Phys. 1997;273(5):R1742–8.

    CAS  Google Scholar 

  16. Elfont RM, Sundaresan PR, Sladek CD. Adrenergic-receptors on cerebral microvessels - pericyte contribution. Am J Phys. 1989;256(1):R224–30.

    CAS  Google Scholar 

  17. Ferrari-Dileo G, Davis EB. Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci. 1992;33(1):42.

    CAS  PubMed  Google Scholar 

  18. Sakagami K, Wu DM, Puro DG. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol. 1999;521(Pt 3):637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. von Beckerath N, Nees S, Neumann FJ, Krebs B, Juchem G, Schömig A. An inward rectifier and a voltage-dependent K+ current in single, cultured pericytes from bovine heart. Cardiovasc Res. 2000;46(3):569–78.

    Article  Google Scholar 

  20. Berweck S, Lepple-Wienhues A, Stöss M, Wiederholt M. Large conductance calcium-activated potassium channels in cultured retinal pericytes under normal and high-glucose conditions. Arch Eur J Physiol. 1994;427(1–2):9–16.

    Article  CAS  Google Scholar 

  21. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6. doi:10.1038/nature04478.

    Article  CAS  PubMed  Google Scholar 

  22. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77. doi:10.1083/jcb.200302047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franco M, Roswall P, Cortez E, Hanahan D, Pietras K. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–17. doi:10.1182/blood-2011-01-331694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93. doi:10.1038/nm0603-685.

    Article  CAS  PubMed  Google Scholar 

  25. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8(16):1875–87.

    Article  PubMed  Google Scholar 

  27. Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.

    Article  CAS  PubMed  Google Scholar 

  28. Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Todd Valerius M, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97. doi:10.2353/ajpath.2010.090517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paquet-Fifield S, Schlüter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Investig. 2009;119:2795. doi:10.1172/JCI38535DS1.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Balabanov R, Washington R, Wagnerova J. CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvascular Res. 1996;52:127.

    Article  CAS  Google Scholar 

  31. Lam P-y, Huttenlocher A. Interstitial leukocyte migration in vivo. Curr Opin Cell Biol. 2013;25(5):650–8. doi:10.1016/j.ceb.2013.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Proebstl D, Voisin M-B, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. 2012;209(6):1219–34. doi:10.1084/jem.20111622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Brühl M-L, Gärtner F, et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol. 2012;14(1):41–51. doi:10.1038/ni.2477.

    Article  PubMed  Google Scholar 

  34. Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla H-J. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014;1550(March):1–8. doi:10.1016/j.brainres.2014.01.004.

    Article  CAS  PubMed  Google Scholar 

  35. Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, et al. Lung pericyte-like cells are functional immune sentinel cells. Am J Physiol Lung Cell Mol Physiol. 2017; doi:10.1152/ajplung.00349.2016.

    PubMed  Google Scholar 

  36. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27. doi:10.1016/j.neuron.2010.09.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Investig. 1999;103(2):159–65. doi:10.1172/JCI5028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160(3):985–1000. doi:10.1016/S0002-9440(10)64920-6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye (Lond). 2002;16(3):242–60. doi:10.1038/sj/eye/6700133.

    Article  CAS  Google Scholar 

  40. Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, Lin F. Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci. 2011;52(12):9005–10. doi:10.1167/iovs.11-8008.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Duffield JS, Humphreys BD. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int. 2011;79(5):494–501. doi:10.1038/ki.2010.338.

    Article  PubMed  Google Scholar 

  42. Smith SW, Chand S, Savage COS. Biology of the renal pericyte. Nephrol Dial Transplant. 2012;27(6):2149–55. doi:10.1093/ndt/gfs134.

    Article  PubMed  Google Scholar 

  43. Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol. 2011;38(7):467–73. doi:10.1111/j.1440-1681.2011.05531.x.

    Article  PubMed  Google Scholar 

  44. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–96. doi:10.1038/nrneph.2011.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin S-L, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173(6):1617–27. doi:10.2353/ajpath.2008.080433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wada T, Sakai N, Matsushima K, Kaneko S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 2007;72(3):269–73. doi:10.1038/sj.ki.5002325.

    Article  CAS  PubMed  Google Scholar 

  47. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Investig. 2011;121(2):468–74. doi:10.1172/JCI44595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen WCW, Baily JE, Corselli M, Díaz ME, Sun B, Xiang G, Gray GA, Huard J, Péault B. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells. 2015;33(2):557–73. doi:10.1002/stem.1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O'Farrell FM, Attwell D. A role for pericytes in coronary no-reflow. Nat Rev Cardiol. 2014;11(7):427–32. doi:10.1038/nrcardio.2014.58.

    Article  PubMed  Google Scholar 

  50. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118(3):400–9. doi:10.1161/CIRCRESAHA.115.307778.

    Article  CAS  PubMed  Google Scholar 

  51. Birbrair A, Tan Z, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther. 2014;5(6):122. doi:10.1186/scrt512.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Corselli M, Chen C-W, Sun B, Solomon Y, Peter Rubin J, Péault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012;21(8):1299–308. doi:10.1089/scd.2011.0200.

    Article  CAS  PubMed  Google Scholar 

  53. Avolio E, Rodriguez-Arabaolaza I, Spencer HL, Riu F, Mangialardi G, Slater SC, Rowlinson J, et al. Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J Am Heart Assoc. 2015;4(6):e002043. doi:10.1161/JAHA.115.002043.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Katare RG, Madeddu P. Pericytes from human veins for treatment of myocardial ischemia. Trends Cardiovasc Med. 2013;23:66. doi:10.1016/j.tcm.2012.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen C-W, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, et al. Human pericytes for ischemic heart repair. Stem Cells. 2013;31(2):305–16. doi:10.1002/stem.1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Yusu G, Dalton ND, Rockenstein E, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017;20:345. doi:10.1016/j.stem.2016.12.006.

    Article  PubMed  Google Scholar 

  57. Boström K, Watson KE, Horn S, Wortham C. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Investig. 1993;91:1800.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Orekhov AN, Andreeva ER, Andrianova IV, Bobryshev YV. Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries. Atherosclerosis. 2010;212(2):436–43. doi:10.1016/j.atherosclerosis.2010.07.009.

    Article  CAS  PubMed  Google Scholar 

  59. Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res. 2014;103(4):438–51. doi:10.1093/cvr/cvu168.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Kennedy-Lydon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kennedy-Lydon, T. (2017). Immune Functions and Properties of Resident Cells in the Heart and Cardiovascular System: Pericytes. In: Sattler, S., Kennedy-Lydon, T. (eds) The Immunology of Cardiovascular Homeostasis and Pathology. Advances in Experimental Medicine and Biology, vol 1003. Springer, Cham. https://doi.org/10.1007/978-3-319-57613-8_5

Download citation

Publish with us

Policies and ethics