Skip to main content

Properties and Immune Function of Cardiac Fibroblasts

  • Chapter
  • First Online:
The Immunology of Cardiovascular Homeostasis and Pathology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1003))

Abstract

This chapter will discuss the role of cardiac fibroblasts as a target of various immunological inputs as well as an immunomodulatory hub of the heart through interaction with immune cell types and chemokine or cytokine signaling. While the purpose of this chapter is to explore the immunomodulatory properties of cardiac fibroblasts, it is important to note that cardiac fibroblasts are not a homogeneous cell type, but have a unique embryological origin and molecular identity. Specific properties of cardiac fibroblasts may influence the way they interact with the heart microenvironment to promote healthy homeostatic function or respond to pathological insults. Therefore, we will briefly discuss these aspects of cardiac fibroblast biology and then focus on their immunomodulatory role in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIM:

Absent in melanoma protein

APC:

Antigen-presenting cell

BNP:

Brain natriuretic peptide

Ccl2:

Chemokine ligand 2 or MCP-1

Ccr2:

Chemokine receptor 2 or MCP-1 receptor

CD:

Cluster of differentiation

CF:

Complement factor

Col1a1:

Collagen, type I, alpha 1

Cre:

Cre recombinase, tyrosine recombinase enzyme derived from the P1 bacteriophage, recognizes specific DNA sequences (LoxP sites) and catalyzes recombination between two recognition LoxP sites, and commonly used in mouse genetic recombineering to remove particular genes of interest

Cxcl1:

Chemokine ligand 1 or GROα

Cxcl2:

Chemokine ligand 2 or GROβ

Cxcl8:

Chemokine ligand 8 or IL-8

DAMPs:

Damage-associated molecular patterns

DC:

Dendritic cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial to mesenchymal transition

Erk1:

Extracellular signal-regulated kinase 1(serine threonine kinase) or MAPK3

Foxp3:

Transcription factor forkhead box P3

Gata:

Transcription factor GATA-binding protein

GCSF:

Granulocyte colony-stimulating factor

GFP:

Green fluorescent protein

GMCSF:

Granulocyte macrophage colony-stimulating factor

GRO:

Growth-regulated protein

H2:

Histamine type 2 receptor

Hand:

Transcription factor heart and neural crest derivatives expressed

IFN-γ:

Interferon gamma

IL:

Interleukin

Ltb4:

Leukotriene B4

MAPK3:

Mitogen-activated protein kinase 3

MBP:

Major basic protein

MCP-1:

Monocyte chemotactic protein 1 or Ccl2

MCP-3:

Monocyte chemotactic protein 3

mEF-SK4:

Anti-feeder antibody, clone mEF-SK4

MHC:

Major histocompatibility complex

MIP-2α:

Macrophage inflammatory protein-2α

MMP:

Matrix metalloproteinase

MPO:

Myeloperoxidase

NADPH:

Nicotinamide adenine dinucleotide phosphate

Nfatc1:

Transcription factor nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1

NF-κB:

Nuclear factor kappa B

NK:

Natural killer

NOD:

Nucleotide-binding oligomerization domain containing

PAMP:

Pathogen-associated molecular pattern

Pdgfra:

Platelet-derived growth factor receptor a

PKC:

Protein kinase C

PRR:

Pattern recognition receptor

RAGE:

Receptor for advanced glycosylation end product-specific receptor

RANTES:

Regulated on activation, normal T cell expressed and secreted or CCL5

RIG:

Retinoic acid-inducible gene or RLR

RLR:

Retinoic acid-inducible gene

ROR t:

Retinoic acid receptor-related orphan nuclear receptor

SDF-1:

Stromal-derived factor 1or Cxcl12

SHIP:

SH2 domain-containing inositol 5-phosphatase

SMA:

Smooth muscle actin

Tbx:

T-box transcription factor

TF:

Tissue factor

TGF-β:

Transforming growth factor-β

Th:

T helper lymphocyte

Thy1:

Thymocyte antigen 1 or CD90

Tie2:

Tyrosine kinase with Ig and EGF homology domains 2

TIMP:

Tissue inhibitor of metalloproteinase

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor alpha

Tnfr:

TNF receptor

Treg:

T regulatory lymphocyte

Wt-1:

Transcription factor Wilms tumor factor 1

References

  1. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360.

    Article  PubMed  Google Scholar 

  3. Turner NA, editor. The cardiac fibroblast. 1st ed. Kerala: Research Signpost; 2011.

    Google Scholar 

  4. Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development. 2016;143(3):387–97.

    Article  CAS  PubMed  Google Scholar 

  5. Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res. 2014;115(7):625–35.

    Article  CAS  PubMed  Google Scholar 

  6. Moore-Morris T, Guimaraes-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 2014;124(7):2921–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118(3):400–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz-Villalba A, Simon AM, Pogontke C, Castillo MI, Abizanda G, Pelacho B, et al. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol. 2015;65(19):2057–66.

    Article  PubMed  Google Scholar 

  9. Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res. 2014;114(9):1422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furtado MB, Nim HT, Gould JA, Costa MW, Rosenthal NA, Boyd SE. Microarray profiling to analyse adult cardiac fibroblast identity. Genomics Data. 2014;2:345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alavi SH, Kheradvar A. A hybrid tissue-engineered heart valve. Ann Thorac Surg. 2015;99(6):2183–7.

    Article  PubMed  Google Scholar 

  15. Chan V, Neal DM, Uzel SG, Kim H, Bashir R, Asada HH. Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip. 2015;15(10):2258–68.

    Article  CAS  PubMed  Google Scholar 

  16. Hong H, Dong N, Shi J, Chen S, Guo C, Hu P, et al. Fabrication of a novel hybrid scaffold for tissue engineered heart valve. J Huazhong Univ Sci Technol Med Sci. 2009;29(5):599–603.

    Article  CAS  PubMed  Google Scholar 

  17. Noguchi R, Nakayama K, Itoh M, Kamohara K, Furukawa K, Oyama J, et al. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016;35(1):137–45.

    Article  PubMed  Google Scholar 

  18. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 2009;16(2):233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  20. Kohl P, Camelliti P, Burton FL, Smith GL. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol. 2005;38(4 Suppl):45–50.

    Article  PubMed  Google Scholar 

  21. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139(12):2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai X, Zhang W, Hu J, Zhang L, Sultana N, Wu B, et al. Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development. 2013;140(15):3176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, et al. Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. Proc Natl Acad Sci U S A. 2011;108(10):4006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254–65.

    Article  CAS  PubMed  Google Scholar 

  25. Van Linthout S, Miteva K, Tschope C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102(2):258–69.

    Article  PubMed  CAS  Google Scholar 

  26. Esmon CT. The interactions between inflammation and coagulation. Br J Haematol. 2005;131(4):417–30.

    Article  CAS  PubMed  Google Scholar 

  27. Chambers RC. Procoagulant signalling mechanisms in lung inflammation and fibrosis: novel opportunities for pharmacological intervention? Br J Pharmacol. 2008;153(Suppl 1):S367–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Scotton CJ, Krupiczojc MA, Konigshoff M, Mercer PF, Lee YC, Kaminski N, et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest. 2009;119(9):2550–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hartupee J, Mann DL. Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol. 2015;93:143–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  33. Colucci F, Caligiuri MA, Di Santo JP. What does it take to make a natural killer? Nat Rev Immunol. 2003;3(5):413–25.

    Article  CAS  PubMed  Google Scholar 

  34. Ayach BB, Yoshimitsu M, Dawood F, Sun M, Arab S, Chen M, et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci U S A. 2006;103(7):2304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair. 2013;6(1):11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnes TC, Anderson ME, Edwards SW, Moots RJ. Neutrophil-derived reactive oxygen species in SSc. Rheumatology (Oxford). 2012;51(7):1166–9.

    Article  CAS  Google Scholar 

  37. Svegliati-Baroni G, Saccomanno S, van Goor H, Jansen P, Benedetti A, Moshage H. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver. 2001;21(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  38. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu XH, Pan LL, Deng HY, Xiong QH, Wu D, Huang GY, et al. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free Radic Biol Med. 2013;54:93–104.

    Article  CAS  PubMed  Google Scholar 

  40. Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med. 2007;43(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  41. Cave A, Grieve D, Johar S, Zhang M, Shah AM. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360(1464):2327–34.

    Article  CAS  Google Scholar 

  42. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275(5306):1649–52.

    Article  CAS  PubMed  Google Scholar 

  43. Hagler MA, Hadley TM, Zhang H, Mehra K, Roos CM, Schaff HV, et al. TGF-beta signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res. 2013;99(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation. 2002;105(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  45. Johar D, Roth JC, Bay GH, Walker JN, Kroczak TJ, Los M. Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Rocz Akad Med Bialymst. 2004;49:31–9.

    CAS  PubMed  Google Scholar 

  46. Aceves SS, Ackerman SJ. Relationships between eosinophilic inflammation, tissue remodeling, and fibrosis in eosinophilic esophagitis. Immunol Allergy Clin N Am. 2009;29(1):197–211. xiii–xiv.

    Article  Google Scholar 

  47. Seguela PE, Iriart X, Acar P, Montaudon M, Roudaut R, Thambo JB. Eosinophilic cardiac disease: molecular, clinical and imaging aspects. Arch Cardiovasc Dis. 2015;108(4):258–68.

    Article  PubMed  Google Scholar 

  48. Wehling-Henricks M, Sokolow S, Lee JJ, Myung KH, Villalta SA, Tidball JG. Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy. Hum Mol Genet. 2008;17(15):2280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med. 2006;203(9):2073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Millonig G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Romani N, et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol. 2001;21(4):503–8.

    Article  CAS  PubMed  Google Scholar 

  51. Dopheide JF, Sester U, Schlitt A, Horstick G, Rupprecht HJ, Munzel T, et al. Monocyte-derived dendritic cells of patients with coronary artery disease show an increased expression of costimulatory molecules CD40, CD80 and CD86 in vitro. Coron Artery Dis. 2007;18(7):523–31.

    Article  PubMed  Google Scholar 

  52. Hart DN, Fabre JW. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med. 1981;154(2):347–61.

    Article  CAS  PubMed  Google Scholar 

  53. Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med. 2009;206(3):497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asadi M, Farokhi F, Delirezh N, Ganji Bakhsh M, Nejati V, Golami K. Fibroblast and T cells conditioned media induce maturation dendritic cell and promote T helper immune response. Vet Res Forum. 2012;3(2):111–8.

    PubMed  PubMed Central  Google Scholar 

  55. Kitamura H, Cambier S, Somanath S, Barker T, Minagawa S, Markovics J, et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin alphavbeta8-mediated activation of TGF-beta. J Clin Invest. 2011;121(7):2863–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dixon KO, Rossmann L, Kamerling SW, van Kooten C. Human renal fibroblasts generate dendritic cells with a unique regulatory profile. Immunol Cell Biol. 2014;92(8):688–98.

    Article  CAS  PubMed  Google Scholar 

  57. Saalbach A, Klein C, Sleeman J, Sack U, Kauer F, Gebhardt C, et al. Dermal fibroblasts induce maturation of dendritic cells. J Immunol. 2007;178(8):4966–74.

    Article  CAS  PubMed  Google Scholar 

  58. Newby AC. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol. 2016;101(11):1327–37.

    Article  CAS  PubMed  Google Scholar 

  59. Lim DH, Cho JY, Miller M, McElwain K, McElwain S, Broide DH. Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am J Physiol Lung Cell Mol Physiol. 2006;291(2):L265–71.

    Article  CAS  PubMed  Google Scholar 

  60. Matsumoto Y, Park IK, Kohyama K. Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. J Immunol. 2009;183(7):4773–81.

    Article  CAS  PubMed  Google Scholar 

  61. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106(1):55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Munch J, Avanesov M, Bannas P, Saring D, Kramer E, Mearini G, et al. Serum matrix metalloproteinases as quantitative biomarkers for myocardial fibrosis and sudden cardiac death risk stratification in patients with hypertrophic cardiomyopathy. J Card Fail. 2016;22(10):845–50.

    Article  PubMed  CAS  Google Scholar 

  63. Westermann D, Savvatis K, Lindner D, Zietsch C, Becher PM, Hammer E, et al. Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation. 2011;124(19):2082–93.

    Article  CAS  PubMed  Google Scholar 

  64. Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int J Biochem Cell Biol. 2011;43(1):154–62.

    Article  CAS  PubMed  Google Scholar 

  65. Rockey DC, Bell PD, Hill JA. Fibrosis--a common pathway to organ injury and failure. N Engl J Med. 2015;373(1):96.

    Article  PubMed  CAS  Google Scholar 

  66. Mewhort HE, Lipon BD, Svystonyuk DA, Teng G, Guzzardi DG, Silva C, et al. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-beta1. Am J Physiol Heart Circ Physiol. 2016;310(6):H716–24.

    Article  PubMed  Google Scholar 

  67. Bronnum H, Eskildsen T, Andersen DC, Schneider M, Sheikh SP. IL-1beta suppresses TGF-beta-mediated myofibroblast differentiation in cardiac fibroblasts. Growth Factors. 2013;31(3):81–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol. 1999;112(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  69. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27.

    Article  CAS  PubMed  Google Scholar 

  70. Meyer-Ter-Vehn T, Gebhardt S, Sebald W, Buttmann M, Grehn F, Schlunck G, et al. p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci. 2006;47(4):1500–9.

    Article  PubMed  Google Scholar 

  71. Overall CM, Wrana JL, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem. 1989;264(3):1860–9.

    CAS  PubMed  Google Scholar 

  72. Varga J, Jimenez SA. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-beta. Biochem Biophys Res Commun. 1986;138(2):974–80.

    Article  CAS  PubMed  Google Scholar 

  73. Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007;13(22):3056–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–5.

    Article  CAS  PubMed  Google Scholar 

  75. Okada H, Takemura G, Kosai K, Li Y, Takahashi T, Esaki M, et al. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation. 2005;111(19):2430–7.

    Article  CAS  PubMed  Google Scholar 

  76. Kulkarni AB, Karlsson S. Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 1993;143(1):3–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, et al. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res. 2004;64(3):526–35.

    Article  CAS  PubMed  Google Scholar 

  78. Hatamochi A, Mori K, Ueki H. Role of cytokines in controlling connective tissue gene expression. Arch Dermatol Res. 1994;287(1):115–21.

    Article  CAS  PubMed  Google Scholar 

  79. Sullivan DE, Ferris M, Nguyen H, Abboud E, Brody AR. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J Cell Mol Med. 2009;13(8B):1866–76.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 2009;119(10):1386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duerrschmid C, Crawford JR, Reineke E, Taffet GE, Trial J, Entman ML, et al. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol. 2013;57:59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Levick SP, Melendez GC, Plante E, McLarty JL, Brower GL, Janicki JS. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res. 2011;89(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kinet JP. The essential role of mast cells in orchestrating inflammation. Immunol Rev. 2007;217:5–7.

    Article  CAS  PubMed  Google Scholar 

  84. Kim J, Ogai A, Nakatani S, Hashimura K, Kanzaki H, Komamura K, et al. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol. 2006;48(7):1378–84.

    Article  CAS  PubMed  Google Scholar 

  85. Asanuma H, Minamino T, Ogai A, Kim J, Asakura M, Komamura K, et al. Blockade of histamine H2 receptors protects the heart against ischemia and reperfusion injury in dogs. J Mol Cell Cardiol. 2006;40(5):666–74.

    Article  CAS  PubMed  Google Scholar 

  86. Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS. Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol. 2002;283(2):H518–25.

    Article  CAS  PubMed  Google Scholar 

  87. Brower GL, Janicki JS. Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Card Fail. 2005;11(7):548–56.

    Article  CAS  PubMed  Google Scholar 

  88. Levick SP, Gardner JD, Holland M, Hauer-Jensen M, Janicki JS, Brower GL. Protection from adverse myocardial remodeling secondary to chronic volume overload in mast cell deficient rats. J Mol Cell Cardiol. 2008;45(1):56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation. 1998;98(7):699–710.

    Article  CAS  PubMed  Google Scholar 

  90. Seguin CA, Pilliar RM, Madri JA, Kandel RA. TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976). 2008;33(4):356–65.

    Article  Google Scholar 

  91. Gilles S, Zahler S, Welsch U, Sommerhoff CP, Becker BF. Release of TNF-alpha during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res. 2003;60(3):608–16.

    Article  CAS  PubMed  Google Scholar 

  92. Bhattacharya K, Farwell K, Huang M, Kempuraj D, Donelan J, Papaliodis D, et al. Mast cell deficient W/Wv mice have lower serum IL-6 and less cardiac tissue necrosis than their normal littermates following myocardial ischemia-reperfusion. Int J Immunopathol Pharmacol. 2007;20(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  93. Cimini M, Fazel S, Zhuo S, Xaymardan M, Fujii H, Weisel RD, et al. c-kit dysfunction impairs myocardial healing after infarction. Circulation. 2007;116(11 Suppl):I77–82.

    Google Scholar 

  94. Hara M, Ono K, Hwang MW, Iwasaki A, Okada M, Nakatani K, et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med. 2002;195(3):375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Levick SP, McLarty JL, Murray DB, Freeman RM, Carver WE, Brower GL. Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension. 2009;53(6):1041–7.

    Article  CAS  PubMed  Google Scholar 

  96. Gailit J, Marchese MJ, Kew RR, Gruber BL. The differentiation and function of myofibroblasts is regulated by mast cell mediators. J Invest Dermatol. 2001;117(5):1113–9.

    Article  CAS  PubMed  Google Scholar 

  97. Skrabal CA, Thompson LO, Southard RE, Joyce DL, Noon GP, Loebe M, et al. Interaction between isolated human myocardial mast cells and cultured fibroblasts. J Surg Res. 2004;118(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  98. Boerma M, Fiser WP, Hoyt G, Berry GJ, Joseph L, Joseph J, et al. Influence of mast cells on outcome after heterotopic cardiac transplantation in rats. Transpl Int. 2007;20(3):256–65.

    Article  CAS  PubMed  Google Scholar 

  99. Genovese A, Rossi FW, Spadaro G, Galdiero MR, Marone G. Human cardiac mast cells in anaphylaxis. Chem Immunol Allergy. 2010;95:98–109.

    Article  CAS  PubMed  Google Scholar 

  100. Li QY, Raza-Ahmad A, MacAulay MA, Lalonde LD, Rowden G, Trethewey E, et al. The relationship of mast cells and their secreted products to the volume of fibrosis in posttransplant hearts. Transplantation. 1992;53(5):1047–51.

    Article  CAS  PubMed  Google Scholar 

  101. Zweifel M, Hirsiger H, Matozan K, Welle M, Schaffner T, Mohacsi P. Mast cells in ongoing acute rejection: increase in number and expression of a different phenotype in rat heart transplants. Transplantation. 2002;73(11):1707–16.

    Article  CAS  PubMed  Google Scholar 

  102. Koskinen PK, Kovanen PT, Lindstedt KA, Lemstrom KB. Mast cells in acute and chronic rejection of rat cardiac allografts--a major source of basic fibroblast growth factor. Transplantation. 2001;71(12):1741–7.

    Article  CAS  PubMed  Google Scholar 

  103. McLarren KW, Cole AE, Weisser SB, Voglmaier NS, Conlin VS, Jacobson K, et al. SHIP-deficient mice develop spontaneous intestinal inflammation and arginase-dependent fibrosis. Am J Pathol. 2011;179(1):180–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Monroe JG, Rothenberg EV, editors. Molecular biology of B-cell and T-cell development. New York: Springer Science and Business Media, LLC; 1998.

    Google Scholar 

  105. Yoshizaki A, Yanaba K, Iwata Y, Komura K, Ogawa A, Akiyama Y, et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol. 2010;185(4):2502–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp Lung Res. 1995;21(5):791–808.

    Article  CAS  PubMed  Google Scholar 

  107. Oldroyd SD, Thomas GL, Gabbiani G, El Nahas AM. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int. 1999;56(6):2116–27.

    Article  CAS  PubMed  Google Scholar 

  108. Borthwick LA, Barron L, Hart KM, Vannella KM, Thompson RW, Oland S, et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol. 2016;9(1):38–55.

    Article  CAS  PubMed  Google Scholar 

  109. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1049–60.

    Article  CAS  PubMed  Google Scholar 

  110. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104(6):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009;2(2):103–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jimenez SA, Freundlich B, Rosenbloom J. Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest. 1984;74(3):1112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJ, et al. Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol. 2004;165(6):1883–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nathan CF, Prendergast TJ, Wiebe ME, Stanley ER, Platzer E, Remold HG, et al. Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J Exp Med. 1984;160(2):600–5.

    Article  CAS  PubMed  Google Scholar 

  115. Piguet PF, Collart MA, Grau GE, Kapanci Y, Vassalli P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med. 1989;170(3):655–63.

    Article  CAS  PubMed  Google Scholar 

  116. Han YL, Li YL, Jia LX, Cheng JZ, Qi YF, Zhang HJ, et al. Reciprocal interaction between macrophages and T cells stimulates IFN-gamma and MCP-1 production in Ang II-induced cardiac inflammation and fibrosis. PLoS One. 2012;7(5):e35506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen ES, Greenlee BM, Wills-Karp M, Moller DR. Attenuation of lung inflammation and fibrosis in interferon-gamma-deficient mice after intratracheal bleomycin. Am J Respir Cell Mol Biol. 2001;24(5):545–55.

    Article  CAS  PubMed  Google Scholar 

  119. Marko L, Kvakan H, Park JK, Qadri F, Spallek B, Binger KJ, et al. Interferon-gamma signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension. 2012;60(6):1430–6.

    Article  CAS  PubMed  Google Scholar 

  120. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol. 2003;171(7):3655–67.

    Article  CAS  PubMed  Google Scholar 

  121. Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling. Hypertension. 2006;48(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  122. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  123. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol. 2000;164(5):2585–91.

    Article  CAS  PubMed  Google Scholar 

  125. Yang G, Volk A, Petley T, Emmell E, Giles-Komar J, Shang X, et al. Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine. 2004;28(6):224–32.

    Article  CAS  PubMed  Google Scholar 

  126. Hashimoto S, Gon Y, Takeshita I, Maruoka S, Horie T. IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase-dependent pathway. J Allergy Clin Immunol. 2001;107(6):1001–8.

    Article  CAS  PubMed  Google Scholar 

  127. Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, et al. IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One. 2012;7(12):e52332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mentink-Kane MM, Wynn TA. Opposing roles for IL-13 and IL-13 receptor alpha 2 in health and disease. Immunol Rev. 2004;202:191–202.

    Article  CAS  PubMed  Google Scholar 

  129. Brunner SM, Schiechl G, Kesselring R, Martin M, Balam S, Schlitt HJ, et al. IL-13 signaling via IL-13Ralpha2 triggers TGF-beta1-dependent allograft fibrosis. Transplant Res. 2013;2(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE, Itan M, et al. A protective role for IL-13 receptor alpha 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol. 2016;9(1):240–53.

    Article  CAS  PubMed  Google Scholar 

  131. Feng W, Li W, Liu W, Wang F, Li Y, Yan W. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol. 2009;87(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  132. Wang L, Chen S, Xu K. IL-17 expression is correlated with hepatitis B-related liver diseases and fibrosis. Int J Mol Med. 2011;27(3):385–92.

    CAS  PubMed  Google Scholar 

  133. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28(4):454–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu Y, Zhu H, Su Z, Sun C, Yin J, Yuan H, et al. IL-17 contributes to cardiac fibrosis following experimental autoimmune myocarditis by a PKCbeta/Erk1/2/NF-kappaB-dependent signaling pathway. Int Immunol. 2012;24(10):605–12.

    Article  CAS  PubMed  Google Scholar 

  136. Yamashita T, Iwakura T, Matsui K, Kawaguchi H, Obana M, Hayama A, et al. IL-6-mediated Th17 differentiation through RORgammat is essential for the initiation of experimental autoimmune myocarditis. Cardiovasc Res. 2011;91(4):640–8.

    Article  CAS  PubMed  Google Scholar 

  137. Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl G, et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125(13):1652–63.

    Article  CAS  PubMed  Google Scholar 

  138. Yamashita T, Obana M, Hayama A, Iwakura T, Komuro I, Nakayama H, et al. Th17 cells exhibit protective effects against cardiac fibrosis after myocardial infarction. Circulation. 2011;124(Suppl 21):A14566. Core 5.

    Google Scholar 

  139. Liu F, Liu J, Weng D, Chen Y, Song L, He Q, et al. CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice. PLoS One. 2010;5(11):e15404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kanellakis P, Dinh TN, Agrotis A, Bobik A. CD4(+)CD25(+)Foxp3(+) regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J Hypertens. 2011;29(9):1820–8.

    Article  CAS  PubMed  Google Scholar 

  141. Cao Y, Xu W, Xiong S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis. PLoS One. 2013;8(9):e74955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zimmermann O, Homann JM, Bangert A, Muller AM, Hristov G, Goeser S, et al. Successful use of mRNA-nucleofection for overexpression of interleukin-10 in murine monocytes/macrophages for anti-inflammatory therapy in a murine model of autoimmune myocarditis. J Am Heart Assoc. 2012;1(6):e003293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol. 2014;307(8):H1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  145. Matsumoto K, Ogawa M, Suzuki J, Hirata Y, Nagai R, Isobe M. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int Heart J. 2011;52(6):382–7.

    Article  CAS  PubMed  Google Scholar 

  146. Sharir R, Semo J, Shimoni S, Ben-Mordechai T, Landa-Rouben N, Maysel-Auslender S, et al. Experimental myocardial infarction induces altered regulatory T cell hemostasis, and adoptive transfer attenuates subsequent remodeling. PLoS One. 2014;9(12):e113653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Skorska A, von Haehling S, Ludwig M, Lux CA, Gaebel R, Kleiner G, et al. The CD4(+) AT2R(+) T cell subpopulation improves post-infarction remodelling and restores cardiac function. J Cell Mol Med. 2015;19(8):1975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol. 2012;107(1):232.

    Article  PubMed  Google Scholar 

  149. Wang YP, Xie Y, Ma H, Su SA, Wang YD, Wang JA, et al. Regulatory T lymphocytes in myocardial infarction: a promising new therapeutic target. Int J Cardiol. 2016;203:923–8.

    Article  PubMed  Google Scholar 

  150. Chen WC, Lee BG, Park DW, Kim K, Chu H, Kim K, et al. Controlled dual delivery of fibroblast growth factor-2 and interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials. 2015;72:138–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Verma SK, Krishnamurthy P, Barefield D, Singh N, Gupta R, Lambers E, et al. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-kappaB. Circulation. 2012;126(4):418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kesherwani V, Chavali V, Hackfort BT, Tyagi SC, Mishra PK. Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Front Physiol. 2015;6:124.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Franz M, Doll F, Grun K, Richter P, Kose N, Ziffels B, et al. Targeted delivery of interleukin-10 to chronic cardiac allograft rejection using a human antibody specific to the extra domain a of fibronectin. Int J Cardiol. 2015;195:311–22.

    Article  PubMed  Google Scholar 

  154. Holt AP, Stamataki Z, Adams DH. Attenuated liver fibrosis in the absence of B cells. Hepatology. 2006;43(4):868–71.

    Article  CAS  PubMed  Google Scholar 

  155. Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest. 2005;115(11):3072–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou X, Tan FK, Milewicz DM, Guo X, Bona CA, Arnett FC. Autoantibodies to fibrillin-1 activate normal human fibroblasts in culture through the TGF-beta pathway to recapitulate the “scleroderma phenotype”. J Immunol. 2005;175(7):4555–60.

    Article  CAS  PubMed  Google Scholar 

  157. Francois A, Chatelus E, Wachsmann D, Sibilia J, Bahram S, Alsaleh G, et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res Ther. 2013;15(5):R168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Frank R, Dean SA, Molina MR, Kamoun M, Lal P. Correlations of lymphocyte subset infiltrates with donor-specific antibodies and acute antibody-mediated rejection in endomyocardial biopsies. Cardiovasc Pathol. 2015;24(3):168–72.

    Article  CAS  PubMed  Google Scholar 

  159. Russell PS, Chase CM, Colvin RB. Alloantibody- and T cell-mediated immunity in the pathogenesis of transplant arteriosclerosis: lack of progression to sclerotic lesions in B cell-deficient mice. Transplantation. 1997;64(11):1531–6.

    Article  CAS  PubMed  Google Scholar 

  160. Zeng Q, Ng YH, Singh T, Jiang K, Sheriff KA, Ippolito R, et al. B cells mediate chronic allograft rejection independently of antibody production. J Clin Invest. 2014;124(3):1052–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Serreze DV, Silveira PA. The role of B lymphocytes as key antigen-presenting cells in the development of T cell-mediated autoimmune type 1 diabetes. Curr Dir Autoimmun. 2003;6:212–27.

    Article  PubMed  Google Scholar 

  162. Krebs P, Kurrer MO, Kremer M, De Giuli R, Sonderegger I, Henke A, et al. Molecular mapping of autoimmune B cell responses in experimental myocarditis. J Autoimmun. 2007;28(4):224–33.

    Article  CAS  PubMed  Google Scholar 

  163. Liu PP, Mason JW. Advances in the understanding of myocarditis. Circulation. 2001;104(9):1076–82.

    Article  CAS  PubMed  Google Scholar 

  164. Matsumoto Y, Park IK, Kohyama K. B-cell epitope spreading is a critical step for the switch from C-protein-induced myocarditis to dilated cardiomyopathy. Am J Pathol. 2007;170(1):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu M, Wen S, Wang M, Liang W, Li HH, Long Q, et al. TNF-alpha-secreting B cells contribute to myocardial fibrosis in dilated cardiomyopathy. J Clin Immunol. 2013;33(5):1002–8.

    Article  CAS  PubMed  Google Scholar 

  166. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E, Bilbao-Cortes D, et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One. 2012;7(5):e36814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nash GB, Buckley CD, Ed Rainger G. The local physicochemical environment conditions the proinflammatory response of endothelial cells and thus modulates leukocyte recruitment. FEBS Lett. 2004;569(1–3):13–7.

    Article  CAS  PubMed  Google Scholar 

  169. Tieu BC, Lee C, Sun H, Lejeune W, Recinos A 3rd, Ju X, et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest. 2009;119(12):3637–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189–200.

    Google Scholar 

  171. Lugrin J, Parapanov R, Rosenblatt-Velin N, Rignault-Clerc S, Feihl F, Waeber B, et al. Cutting edge: IL-1alpha is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. J Immunol. 2015;194(2):499–503.

    Article  CAS  PubMed  Google Scholar 

  172. Rohde D, Schon C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky KF, et al. S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via toll-like receptor 4. EMBO Mol Med. 2014;6(6):778–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang W, Lavine K, Epelman S, Evans S, Weinheimer C, Barger P, et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc. 2015;4(6):e001993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol. 2011;8(5):292–300.

    Article  CAS  PubMed  Google Scholar 

  175. Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58(2):88–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood. 2002;100(12):3853–60.

    Article  CAS  PubMed  Google Scholar 

  177. McGettrick HM, Smith E, Filer A, Kissane S, Salmon M, Buckley CD, et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur J Immunol. 2009;39(1):113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell. 1995;80(2):331–40.

    Article  CAS  PubMed  Google Scholar 

  179. Zickus C, Kunkel SL, Simpson K, Evanoff H, Glass M, Strieter RM, et al. Differential regulation of C-C chemokines during fibroblast-monocyte interactions: adhesion vs. inflammatory cytokine pathways. Mediat Inflamm. 1998;7(4):269–74.

    Article  CAS  Google Scholar 

  180. Steinhauser ML, Kunkel SL, Hogaboam CM, Evanoff H, Strieter RM, Lukacs NW. Macrophage/fibroblast coculture induces macrophage inflammatory protein-1alpha production mediated by intercellular adhesion molecule-1 and oxygen radicals. J Leukoc Biol. 1998;64(5):636–41.

    CAS  PubMed  Google Scholar 

  181. Hogaboam CM, Steinhauser ML, Chensue SW, Kunkel SL. Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int. 1998;54(6):2152–9.

    Article  CAS  PubMed  Google Scholar 

  182. Gharaee-Kermani M, Denholm EM, Phan SH. Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem. 1996;271(30):17779–84.

    Article  CAS  PubMed  Google Scholar 

  183. Yamamoto T, Eckes B, Mauch C, Hartmann K, Krieg T. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop. J Immunol. 2000;164(12):6174–9.

    Article  CAS  PubMed  Google Scholar 

  184. Morimoto H, Takahashi M, Izawa A, Ise H, Hongo M, Kolattukudy PE, et al. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res. 2006;99(8):891–9.

    Article  CAS  PubMed  Google Scholar 

  185. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9.

    Article  CAS  PubMed  Google Scholar 

  186. Lee SK, Seo SH, Kim BS, Kim CD, Lee JH, Kang JS, et al. IFN-gamma regulates the expression of B7-H1 in dermal fibroblast cells. J Dermatol Sci. 2005;40(2):95–103.

    Article  CAS  PubMed  Google Scholar 

  187. Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 1997;151(2):317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Yellin MJ, Winikoff S, Fortune SM, Baum D, Crow MK, Lederman S, et al. Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation and IL-6 production and proliferation. J Leukoc Biol. 1995;58(2):209–16.

    CAS  PubMed  Google Scholar 

  189. Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, et al. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol. 2000;165(6):3423–9.

    Article  CAS  PubMed  Google Scholar 

  190. Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011;187(5):2711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Abendroth A, Slobedman B, Lee E, Mellins E, Wallace M, Arvin AM. Modulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol. 2000;74(4):1900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Scott S, Pandolfi F, Kurnick JT. Fibroblasts mediate T cell survival: a proposed mechanism for retention of primed T cells. J Exp Med. 1990;172(6):1873–6.

    Article  CAS  PubMed  Google Scholar 

  193. Zuliani T, Saiagh S, Knol AC, Esbelin J, Dreno B. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One. 2013;8(7):e70408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Boots AM, Wimmers-Bertens AJ, Rijnders AW. Antigen-presenting capacity of rheumatoid synovial fibroblasts. Immunology. 1994;82(2):268–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Pilling D, Akbar AN, Girdlestone J, Orteu CH, Borthwick NJ, Amft N, et al. Interferon-beta mediates stromal cell rescue of T cells from apoptosis. Eur J Immunol. 1999;29(3):1041–50.

    Article  CAS  PubMed  Google Scholar 

  196. Cowie MR, Anker SD, Felker GM, Filippatos G, Jaarsma T, Jourdain P, et al. Improving care for patients with acute heart failure: before, during and after hospitalization. ESC Heart Fail. 2014;1:110–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena B. Furtado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Furtado, M.B., Hasham, M. (2017). Properties and Immune Function of Cardiac Fibroblasts. In: Sattler, S., Kennedy-Lydon, T. (eds) The Immunology of Cardiovascular Homeostasis and Pathology. Advances in Experimental Medicine and Biology, vol 1003. Springer, Cham. https://doi.org/10.1007/978-3-319-57613-8_3

Download citation

Publish with us

Policies and ethics