Assessing the Computational Complexity of Multi-layer Subgraph Detection

  • Robert Bredereck
  • Christian Komusiewicz
  • Stefan Kratsch
  • Hendrik MolterEmail author
  • Rolf Niedermeier
  • Manuel Sorge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)


Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability.


Directed Acyclic Graph Hamiltonian Path Graph Property Hereditary Property Vertex Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



HM and MS were supported by the DFG, project DAPA (NI 369/12). CK was supported by the DFG, project MAGZ (KO 3669/4–1). RB was partially supported by the DFG, fellowship BR 5207/2. This work was initiated at the research retreat of the TU Berlin Algorithmics and Computational Complexity group held in Darlingerode, Harz mountains, in April 2014.


  1. 1.
    Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: a parameterized perspective. In: Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS 2016). LIPIcs, vol. 47, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  2. 2.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Multidimensional networks: foundations of structural analysis. In: Proceedings of the 22nd International World Wide Web Conference (WWW 2013), vol. 16(5–6), pp. 567–593 (2013)Google Scholar
  4. 4.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gmez-Gardees, J., Romance, M., SendNadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 1258–1266. ACM Press (2012)Google Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bui-Xuan, B., Habib, M., Paul, C.: Competitive graph searches. Theor. Comput. Sci. 393(1–3), 72–80 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cai, L., Ye, J.: Dual connectedness of edge-bicolored graphs and beyond. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 141–152. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44465-8_13 Google Scholar
  10. 10.
    Cohen, J.: Trusses: cohesive subgraphs for social network analysis. Technical report, National Security Agency, p. 16 (2008)Google Scholar
  11. 11.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)CrossRefzbMATHGoogle Scholar
  12. 12.
    Eppstein, D., Spiro, E.S.: The \(h\)-index of a graph and its application to dynamic subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gai, A.T., Habib, M., Paul, C., Raffinot, M.: Identifying common connected components of graphs. Technical report, RR-LIRMM-03016, LIRMM, Université de Montpellier II (2003)Google Scholar
  15. 15.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol. 57, 2nd edn. Elsevier B. V., Amsterdam (2004)Google Scholar
  16. 16.
    Jiang, D., Pei, J.: Mining frequent cross-graph quasi-cliques. ACM Trans. Knowl. Discov. Data. 2(4), 16 (2009)CrossRefGoogle Scholar
  17. 17.
    Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs–a survey. Graphs Comb. 24(4), 237–263 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kim, J., Lee, J.: Community detection in multi-layer graphs: a survey. SIGMOD Rec. 44(3), 37–48 (2015)CrossRefGoogle Scholar
  20. 20.
    Kivel, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  21. 21.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, B.: The parameterized complexity of \(k\)-biclique. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pp. 605–615. SIAM (2015)Google Scholar
  23. 23.
    Monien, B.: How to find long paths efficiently. N.-Holl. Math. Stud. 109, 239–254 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Plummer, M.D.: Graph factors and factorization: 1985–2003: a survey. Discret. Math. 307(7–8), 791–821 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rossi, L., Musolesi, M., Torsello, A.: On the \(k\)-anonymization of time-varying and multi-layer social graphs. In: Proceedings of the 9th International Conference on Web and Social Media (ICWSM 2015), pp. 377–386. AAAI Press (2015)Google Scholar
  27. 27.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Out-of-core coherent closed quasi-clique mining from large dense graph databases. ACM Trans. Database Syst. 32(2), 13 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Robert Bredereck
    • 1
  • Christian Komusiewicz
    • 2
  • Stefan Kratsch
    • 3
  • Hendrik Molter
    • 1
    Email author
  • Rolf Niedermeier
    • 1
  • Manuel Sorge
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany
  2. 2.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institut für Informatik IUniversität BonnBonnGermany

Personalised recommendations