Assessing the Computational Complexity of Multi-layer Subgraph Detection

  • Robert Bredereck
  • Christian Komusiewicz
  • Stefan Kratsch
  • Hendrik Molter
  • Rolf Niedermeier
  • Manuel Sorge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10236)

Abstract

Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability.

References

  1. 1.
    Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: a parameterized perspective. In: Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS 2016). LIPIcs, vol. 47, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  2. 2.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (2002)CrossRefMATHGoogle Scholar
  3. 3.
    Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Multidimensional networks: foundations of structural analysis. In: Proceedings of the 22nd International World Wide Web Conference (WWW 2013), vol. 16(5–6), pp. 567–593 (2013)Google Scholar
  4. 4.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gmez-Gardees, J., Romance, M., SendNadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 1258–1266. ACM Press (2012)Google Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Bui-Xuan, B., Habib, M., Paul, C.: Competitive graph searches. Theor. Comput. Sci. 393(1–3), 72–80 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cai, L., Ye, J.: Dual connectedness of edge-bicolored graphs and beyond. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 141–152. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8_13 Google Scholar
  10. 10.
    Cohen, J.: Trusses: cohesive subgraphs for social network analysis. Technical report, National Security Agency, p. 16 (2008)Google Scholar
  11. 11.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)CrossRefMATHGoogle Scholar
  12. 12.
    Eppstein, D., Spiro, E.S.: The \(h\)-index of a graph and its application to dynamic subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gai, A.T., Habib, M., Paul, C., Raffinot, M.: Identifying common connected components of graphs. Technical report, RR-LIRMM-03016, LIRMM, Université de Montpellier II (2003)Google Scholar
  15. 15.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol. 57, 2nd edn. Elsevier B. V., Amsterdam (2004)Google Scholar
  16. 16.
    Jiang, D., Pei, J.: Mining frequent cross-graph quasi-cliques. ACM Trans. Knowl. Discov. Data. 2(4), 16 (2009)CrossRefGoogle Scholar
  17. 17.
    Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs–a survey. Graphs Comb. 24(4), 237–263 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kim, J., Lee, J.: Community detection in multi-layer graphs: a survey. SIGMOD Rec. 44(3), 37–48 (2015)CrossRefGoogle Scholar
  20. 20.
    Kivel, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  21. 21.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lin, B.: The parameterized complexity of \(k\)-biclique. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pp. 605–615. SIAM (2015)Google Scholar
  23. 23.
    Monien, B.: How to find long paths efficiently. N.-Holl. Math. Stud. 109, 239–254 (1985)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Plummer, M.D.: Graph factors and factorization: 1985–2003: a survey. Discret. Math. 307(7–8), 791–821 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rossi, L., Musolesi, M., Torsello, A.: On the \(k\)-anonymization of time-varying and multi-layer social graphs. In: Proceedings of the 9th International Conference on Web and Social Media (ICWSM 2015), pp. 377–386. AAAI Press (2015)Google Scholar
  27. 27.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Out-of-core coherent closed quasi-clique mining from large dense graph databases. ACM Trans. Database Syst. 32(2), 13 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Robert Bredereck
    • 1
  • Christian Komusiewicz
    • 2
  • Stefan Kratsch
    • 3
  • Hendrik Molter
    • 1
  • Rolf Niedermeier
    • 1
  • Manuel Sorge
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany
  2. 2.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institut für Informatik IUniversität BonnBonnGermany

Personalised recommendations