Skip to main content

Diagnostic Uses of Radiopharmaceuticals in Nuclear Medicine

  • Chapter
  • First Online:
Fundamentals of Nuclear Pharmacy
  • 2893 Accesses

Abstract

This chapter presents information on the clinical uses of diagnostic radiopharmaceuticals in nuclear medicine. The presentation is based on individual organs and common diseases. For each organ, a brief description of anatomy, different radiopharmaceuticals, and techniques employed for imaging is included. For tumors and tissue-specific diseases, the pathophysiology of the disease, radiopharmaceuticals, and imaging techniques used for their detection are given. PET/CT and SPECT/CT are commonly used for imaging and their pros and cons discussed. The mechanism of radiotracer uptake in the organ and tissues is elucidated. Wherever appropriate, relevant data are presented in tables. Appropriate illustrations of images depicting normal and/or disease states in humans are provided in support of the contents in the text. Pertinent questions and references related to the chapter are added at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Suggested Reading

  • Anthony CP, Thibodeau GA. Textbook of anatomy and Physiology. St. Louis: Mosby; 1979.

    Google Scholar 

  • Arnold RW, Subramanian G, McAfee JG, et al. Comparison of 99mTc complexes for renal imaging. J Nucl Med. 1975;16:357.

    CAS  PubMed  Google Scholar 

  • Atkins HL, Budinger TF, Lebowitz E, et al. Thallium-201 for medical use. Part 3: human distribution and physical imaging properties. J Nucl Med. 1977;18:133.

    CAS  PubMed  Google Scholar 

  • Barrio JR, Huang SC, Melega WP, et al. 6-[18F]fluoro-L-dopa probes dopamine turnover rates in central dopaminergic structures. J Neurosci Res. 1990;27:487.

    Article  CAS  PubMed  Google Scholar 

  • Berman DS, Kiat HS, Van Train KF, et al. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of imaging protocols. J Nucl Med. 1994;35:681.

    CAS  PubMed  Google Scholar 

  • Booij J, Busemann Sokole E, Stabin MG, et al. Human biodistribution and dosimetry of [123I]FP-CIT: a potent radioligand for imaging of dopamine transporters. Eur J Nucl Med. 1998;25:24.

    Article  CAS  PubMed  Google Scholar 

  • Cook GJR, Maisey MN, Britton KE, Chengazi V, editors. Clinical nuclear medicine. 4th ed. London: Hodder Arnold; 2006.

    Google Scholar 

  • Delbeke D, Martin WH, Patton JA, et al., editors. Practical FDG imaging. A teaching file. New York: Springer; 2002.

    Google Scholar 

  • Dienel GA, Cruz NF, Sokoloff F. Metabolites of 2-deoxy-[14C]-glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab. 1993;13:315.

    Article  CAS  PubMed  Google Scholar 

  • Dilsizian V, Rocco TP, Freedman NMT, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium and stress-redistribution imaging. N Engl J Med. 1990;323:141.

    Article  CAS  PubMed  Google Scholar 

  • Dilsizian V, Bacharach SL, Beanlands RS, et al. Imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolic clinical imaging. J Nucl Cardiol. 2009;16:651.

    Article  Google Scholar 

  • Early PJ, Sodee DB, editors. Principles and practice of nuclear medicine. 2nd ed. St. Louis: Mosby; 1995.

    Google Scholar 

  • Ell PJ, Gambhir SS. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. Edinburgh: Churchill Livingstone; 2004.

    Google Scholar 

  • European Medicines Agency. Vizamyl; flutemetamol (18F); Procedure No. EMEA/H/C/002553; 2014.

    Google Scholar 

  • Gould KL, Yoshida K, Hess MJ, et al. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med. 1991;32:1.

    CAS  PubMed  Google Scholar 

  • Hauser W, Atkins HL, Nelson KG, et al. Technetium-99m-DTPA: a new radiopharmaceutical for brain and kidney imaging. Radiology. 1970;94:679.

    Article  CAS  PubMed  Google Scholar 

  • Henkin RE, Bara D, Dillehay GL, et al., editors. Nuclear medicine. 2nd ed. Philadelphia: Mosby-Elsevier; 2006.

    Google Scholar 

  • Higley B, Smith FW, Smith T, et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl)-phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med. 1993;34:30.

    CAS  PubMed  Google Scholar 

  • Hofmann M, Maecke H, Börner AR, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751.

    Google Scholar 

  • Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial Tl-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988;12(6):1456.

    Article  CAS  PubMed  Google Scholar 

  • Leveille J, Demonceau G, DeRoo M, et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 2: Biodistribution and brain imaging in humans. J Nucl Med. 1989;30:1902.

    CAS  PubMed  Google Scholar 

  • Lin KJ, Hsu WC, Hsiao IT, et al. Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent- a pilot study. Nucl Med Biol. 2010;37:497.

    Article  CAS  PubMed  Google Scholar 

  • Lonskaya I, Hebron M, Chen W, Schackter J, et al. Tau deletion impairs intra cellular β- amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014;9:46.

    Article  PubMed  PubMed Central  Google Scholar 

  • McAfee JG, Grossman ZD, Gagne G, et al. Comparison of renal extraction efficiencies for radioactive agents in the normal dog. J Nucl Med. 1981;22:333.

    CAS  PubMed  Google Scholar 

  • McParland BJ, Wall A, Johansson S. The clinical safety, biodistribution and internal radiation dosimetry of [18F]fluciclovine in healthy volunteers. Eur J Nucl Med Mol Imaging. 2013;40:1256.

    Article  CAS  PubMed  Google Scholar 

  • Mejia AA, Nakamura T, Masatoshi I, et al. Estimation of absorbed dose in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med. 1991;32:699.

    CAS  PubMed  Google Scholar 

  • Mettler FA Jr, Guiberteau MJ. Essentials of nuclear medicine imaging. 5th ed. Philadelphia: Saunders; 2006.

    Google Scholar 

  • Narra RK, Nunn AD, Kuczynski BL, et al. A neutral technetium-99m complex for myocardial imaging. J Nucl Med. 1989;30:1830.

    CAS  PubMed  Google Scholar 

  • Phelps ME, Hoffman EJ, Selin C, et al. Investigation of F-18-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med. 1978;19:1311.

    CAS  PubMed  Google Scholar 

  • Ruhlmann J, Oehr P, Biersack HJ, editors. PET in oncology. Basics and clinical applications. Heidelberg: Springer; 1999.

    Google Scholar 

  • Sabri O, Sabbagh MN, Seibyl J, Barthel H. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015a;11:964.

    Article  PubMed  Google Scholar 

  • Sabri O, Seibyl J, Rowe C, et al. Beta-amyloid imaging with florbetaben. Clin Transl Imaging. 2015b;3:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha GB, Go RT, MacIntyre WJ, et al. Use of 82Sr/82Rb generator in clinical PET studies. Nucl Med Biol. 1990;17:763.

    CAS  Google Scholar 

  • Saha GB, MacIntyre WJ, Brunken RC, et al. Present assessment of myocardial viability by nuclear imaging. Semin Nucl Med. 1996;26:315.

    Article  CAS  PubMed  Google Scholar 

  • Sandler MP, Coleman RE, Walkers FJT, et al., editors. Diagnostic nuclear medicine. 4th ed. Baltimore: Lippincott; 2003.

    Google Scholar 

  • Sandström M, Velikyan I, Garske-Román U, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med. 2013;54:1755.

    Article  PubMed  Google Scholar 

  • Sapirstein LA, Vigt DG, Mandel MJ, et al. Volumes of distribution and clearances of intravenously injected creatinine in the dog. Am J Phys. 1955;181:330.

    CAS  Google Scholar 

  • Schelbert HR, Phelps ME, Huang SC, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981;63:1259.

    Article  CAS  PubMed  Google Scholar 

  • Sharp PF, Smith FW, Gemmell HG, et al. Technetium-99m HMPAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med. 1986;27:171.

    CAS  PubMed  Google Scholar 

  • Sisson JC, Shapiro B, Meyers L, et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med. 1987;28:1625.

    CAS  PubMed  Google Scholar 

  • Skehan SJ, White JF, Evans JW, et al. Mechanism of accumulation of 99mTc-sulesomab in inflammation. J Nucl Med. 2003;44:11.

    CAS  PubMed  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, et al. Technetium 99m methylene diphosphonate – a superior agent for skeletal imaging; comparison with other technetium complexes. J Nucl Med. 1975;16:744.

    CAS  PubMed  Google Scholar 

  • Taylor A Jr, Eshima D, Christian PE, et al. Technetium-99m kit formulation; preliminary results in normal volunteers and patients with renal failure. J Nucl Med. 1988;29:616.

    PubMed  Google Scholar 

  • Taylor A Jr, Eshima D, Fritzberg AR, et al. Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers. J Nucl Med. 1986;27:795.

    PubMed  Google Scholar 

  • Vallabhajosula S, Zimmerman RE, Pickard M, et al. Technetium-99m ECD: a new brain imaging agent. In vivo kinetics and biodistribution studies in normal human studies. J Nucl Med. 1989;30:599.

    CAS  PubMed  Google Scholar 

  • Velikyan I. 68Ga-based radiopharmaceuticals: production and application relationship. Molecules. 2015;20:12913.

    Article  CAS  PubMed  Google Scholar 

  • Virkamaki A, Rissanen E, Hamalainen S. Incorporation of [3-sup3H]glucose and 2-[1-sup14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: implications for the quantitation of tissue glucose uptake. Diabetes. 1997;46:1106.

    Article  CAS  PubMed  Google Scholar 

  • Wackers FJT, Berman DS, Maddahi J, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989;30:301.

    CAS  PubMed  Google Scholar 

  • Wagner HN Jr, Szabo Z, Buchanan JW. Principles of nuclear medicine. 2nd ed. Philadelphia: Saunders; 1995.

    Google Scholar 

  • Wallace AM, Hoh CK, Vera DR, et al. Lymphoseek: a molecular radiopharmaceutical for sentinel node detection. Ann Surg Oncol. 2003;10:531.

    Article  PubMed  Google Scholar 

  • Weiner RE. The mechanism of 67Ga localization in malignant disease. Nucl Med Biol. 1996;23:745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, G.B. (2018). Diagnostic Uses of Radiopharmaceuticals in Nuclear Medicine. In: Fundamentals of Nuclear Pharmacy. Springer, Cham. https://doi.org/10.1007/978-3-319-57580-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57580-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57579-7

  • Online ISBN: 978-3-319-57580-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics