Hysteroscopy pp 725-741 | Cite as

Hysteroscopy and Stem Cell Therapy to Approach Refractory Asherman’s Syndrome



The endometrium is the tissue that lines the inside of the uterine cavity and whose function is to enable implantation of the embryo at the right moment. In the case that implantation of the embryo does not occur, the endometrium is partially destroyed and menstruation takes place, producing a new generation of tissue (upper 2/3), in the next menstrual cycle. It is therefore a tissue with a high capacity for renewal (“self-renewal”) regulated by hormones [1] that undergoes almost complete changes of growth, differentiation and shedding every 28 days during 400–500 cycles during a woman’s reproductive lifetime and also postmenopause with proper hormone replacement therapy. This level of tissue regeneration is only comparable to other tissues with high cellular turnover, such as epidermis, gut epithelium and bone marrow. An increasing number of studies which constitute the current knowledge about endometrium-derived stem cells (EDSCs) have been published in the last decade [2]. Histologically, the endometrium is divided into two functional layers: the basal and functional layers. The functional layer responds to progesterone and oestradiol, and this layer is completely shed during menstruation. The basal layer does not respond to hormones and also does not suffer desquamation, from which it regenerates the mucosa. The human endometrium is composed primarily of two main cell types, epithelial cells (luminal and glandular) and supporting mesenchymal cells (stromal cells), as well as endothelial cells and leukocytes. Additionally, endometrial–myometrial junction is irregular with no submucosal tissue to separate endometrial glandular tissue from the underlying smooth muscle of the myometrium [3].


  1. 1.
    Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70(6):1738–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod. 2015;92(6):138.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Santoro NF, Neal-Perry G. Amenorrhea: a case-based, clinical guide. New York, NY: Humana; 2010.CrossRefGoogle Scholar
  4. 4.
    Hawkins SM, Matzuk MM. The menstrual cycle: basic biology. Ann N Y Acad Sci. 2008;1135:10–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Simon A, Laufer N. Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Genet. 2012;29(11):1227–39.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.PubMedGoogle Scholar
  7. 7.
    Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007;22(1):45–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril. 2004;81(2):403–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16(11):818–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med. 2011;15(4):747–55.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19(11):2065–71.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martinez-Conejero JA, Galan A, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5(6):e10964.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, et al. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5(4):e10387.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pittenger MF. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Bratincsak A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I, Toth ZE, et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007;25(11):2820–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Du H, Naqvi H, Taylor HS. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium. Stem Cells Dev. 2012;21(18):3324–31.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Morelli SS, Rameshwar P, Goldsmith LT. Experimental evidence for bone marrow as a source of nonhematopoietic endometrial stromal and epithelial compartment cells in a murine model. Biol Reprod. 2013;89(1):7.CrossRefPubMedGoogle Scholar
  19. 19.
    Cervello I, Gil-Sanchis C, Mas A, Faus A, Sanz J, Moscardo F, et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS One. 2012;7(1):e30260.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M, Nakao S, et al. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201(6):608e1–8.CrossRefGoogle Scholar
  22. 22.
    Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod. 2008;23(1):139–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Dmowski WP, Greenblatt RB. Asherman’s syndrome and risk of placenta accreta. Obstet Gynecol. 1969;34(2):288–99.PubMedGoogle Scholar
  25. 25.
    Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9(12):e1001356.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Taylor E, Gomel V. The uterus and fertility. Fertil Steril. 2008;89(1):1–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Ventolini G, Zhang M, Gruber J. Hysteroscopy in the evaluation of patients with recurrent pregnancy loss: a cohort study in a primary care population. Surg Endosc. 2004;18(12):1782–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Conforti A, Alviggi C, Mollo A, De Placido G, Magos A. The management of Asherman syndrome: a review of literature. Reprod Biol Endocrinol. 2013;11:118.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu D, Wong YM, Cheong Y, Xia E, Li TC. Asherman syndrome—one century later. Fertil Steril. 2008;89(4):759–79.CrossRefPubMedGoogle Scholar
  30. 30.
    Zikopoulos KA, Kolibianakis EM, Platteau P, de Munck L, Tournaye H, Devroey P, et al. Live delivery rates in subfertile women with Asherman’s syndrome after hysteroscopic adhesiolysis using the resectoscope or the Versapoint system. Reprod Biomed Online. 2004;8(6):720–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Deans R, Abbott J. Review of intrauterine adhesions. J Minim Invasive Gynecol. 2010;17(5):555–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Valle RF, Sciarra JJ. Intrauterine adhesions: hysteroscopic diagnosis, classification, treatment, and reproductive outcome. Am J Obstet Gynecol. 1988;158(6 Pt 1):1459–70.CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao S, Wan Y, Xue M, Zeng X, Xiao F, Xu D, et al. Etiology, treatment, and reproductive prognosis of women with moderate-to-severe intrauterine adhesions. Int J Gynaecol Obstet. 2014;125(2):121–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Pistofidis GA, Dimitropoulos K, Mastrominas M. Comparison of operative and fertility outcome between groups of women with intrauterine adhesions after adhesiolysis. J Am Assoc Gynecol Laparosc. 1996;3(4, Suppl):S40.CrossRefPubMedGoogle Scholar
  35. 35.
    Capella-Allouc S, Morsad F, Rongieres-Bertrand C, Taylor S, Fernandez H. Hysteroscopic treatment of severe Asherman’s syndrome and subsequent fertility. Hum Reprod. 1999;14(5):1230–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Garcia-Martinez O, De Luna-Bertos E, Ramos-Torrecillas J, Manzano-Moreno FJ, Ruiz C. Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life Sci. 2015;123:72–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Yaffe H, Ron M, Polishuk WZ. Amenorrhea, hypomenorrhea, and uterine fibrosis. Am J Obstet Gynecol. 1978;130(5):599–601.CrossRefPubMedGoogle Scholar
  38. 38.
    Senturk L. Thin endometrium in assisted reproductive technology. Curr Opin Obstet Gynecol. 2008;20:221–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Okusami AA, Moore ME, Hurwitz JM, Richlin SS, Leondires MP. A case series of patients with endometrial insufficiency treated with pentoxifylline and alpha-tocopherol. Fertil Steril. 2007;88:S200.CrossRefGoogle Scholar
  40. 40.
    Sher G. Effect of vaginal sildenafil on the outcome of in vitro fertilization (IVF) after multiple IVF failures attributed to poor endometrial development. Fertil Steril. 2002;78:1073–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman's syndrome. J Hum Reprod Sci. 2011;4(1):43–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Santamaria X, Cabanillas S, Cervello I, Arbona C, Raga F, Ferro J, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31(5):1087–96.CrossRefPubMedGoogle Scholar
  43. 43.
    Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9(6):702–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343–53.CrossRefPubMedGoogle Scholar
  46. 46.
    Handgretinger R, Gordon PR, Leimig T, Chen X, Buhring HJ, Niethammer D, et al. Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci. 2003;996:141–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97(26):14720–5.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol. 2006;17(9):2443–56.CrossRefPubMedGoogle Scholar
  49. 49.
    Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004;117(Pt 16):3539–45.CrossRefPubMedGoogle Scholar
  50. 50.
    Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, et al. CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun. 2007;352(2):410–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kamei N, Kwon SM, Alev C, Nakanishi K, Yamada K, Masuda H, et al. Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. J Neurol Sci. 2013;328(1–2):41–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Kijima Y, Ishikawa M, Sunagawa T, Nakanishi K, Kamei N, Yamada K, et al. Regeneration of peripheral nerve after transplantation of CD133+ cells derived from human peripheral blood. J Neurosurg. 2009;110(4):758–67.CrossRefPubMedGoogle Scholar
  54. 54.
    Shi M, Ishikawa M, Kamei N, Nakasa T, Adachi N, Deie M, et al. Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells. 2009;27(4):949–60.CrossRefPubMedGoogle Scholar
  55. 55.
    Murakami K, Lee YH, Lucas ES, Chan YW, Durairaj RP, Takeda S, et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology. 2014;155(11):4542–53.CrossRefPubMedGoogle Scholar
  56. 56.
    Gargett CE. Generating receptive endometrium in Asherman’s syndrome. J Hum Reprod Sci. 2011;4(1):49–52.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Alawadhi F, Du H, Cakmak H, Taylor HS. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS One. 2014;9(5):e96662.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cervello I, Gil-Sanchis C, Santamaria X, Cabanillas S, Diaz A, Faus A, et al. Human CD133(+) bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril. 2015;104(6):1552–60 e1-3.CrossRefPubMedGoogle Scholar
  59. 59.
    Gordon PR, Leimig T, Babarin-Dorner A, Houston J, Holladay M, Mueller I, et al. Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells. Bone Marrow Transplant. 2003;31(1):17–22.CrossRefPubMedGoogle Scholar
  60. 60.
    Singh N, Mohanty S, Seth T, Shankar M, Bhaskaran S, Dharmendra S. Autologous stem cell transplantation in refractory Asherman’s syndrome: a novel cell based therapy. J Hum Reprod Sci. 2014;7(2):93–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Asheman’s Project Director, IgenomixPaternaSpain
  2. 2.Ob/Gyn IVI BarcelonaBarcelonaSpain
  3. 3.Minimally Invasive Gynecologic Surgery and Infertility, Obstetrics and Gynecology, Newton Wellesley HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations