Skip to main content

Localization of Conformational Dynamics of Arrestins by HDX-MS

  • Chapter
  • First Online:
  • 459 Accesses

Abstract

Arrestins are a family of multifunctional adapter proteins that were originally discovered by their ability to desensitize G protein-coupled receptors (GPCRs ). Besides desensitization of GPCRs, arrestins regulate various signaling molecules, such as mitogen-activated protein kinase (MAPK) signaling pathway proteins and ubiquitination pathway proteins. To have such diverse functions, arrestins are structurally dynamic. In this chapter, we will discuss the structural dynamics of arrestins revealed by hydrogen/deuterium exchange mass spectrometry (HDX-MS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Carter JM, Gurevich VV, Prossnitz ER, Engen JR (2005) Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. J Mol Biol 351(4):865–878. doi:10.1016/j.jmb.2005.06.048 S0022-2836(05)00720-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • DeFea KA (2011) Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 23(4):621–629. doi:10.1016/j.cellsig.2010.10.004 S0898-6568(10)00291-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Duc NM, Du Y, Thorsen TS, Lee SY, Zhang C, Kato H, Kobilka BK, Chung KY (2015) Effective application of bicelles for conformational analysis of G protein-coupled receptors by hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 26(5):808–817. doi:10.1007/s13361-015-1083-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271(5247):363–366

    Article  CAS  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383(6599):447–450. doi:10.1038/383447a0

    Article  CAS  PubMed  Google Scholar 

  • Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391(6670):918–921. doi:10.1038/36147

    Article  CAS  PubMed  Google Scholar 

  • Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R (2015) Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 5:15808. doi:10.1038/srep15808 srep15808 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2006a) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110(3):465–502. doi:10.1016/j.pharmthera.2005.09.008 S0163-7258(05)00211-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich EV, Gurevich VV (2006b) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7(9):236. doi:10.1186/gb-2006-7-9-236 gb-2006-7-9-236 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2013) Structural determinants of arrestin functions. Prog Mol Biol Transl Sci 118:57–92. doi:10.1016/B978-0-12-394440-5.00003-6 B978-0-12-394440-5.00003-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV, Cleghorn WM (2008) Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol 186:15–37. doi:10.1007/978-3-540-72843-6_2

    Article  CAS  Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9(9):869–880 S096921260100644X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97(2):257–269 S0092-8674(00)80735-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Iacob RE, Engen JR (2012) Hydrogen exchange mass spectrometry: are we out of the quicksand? J Am Soc Mass Spectrom 23(6):1003–1010. doi:10.1007/s13361-012-0377-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523(7562):561–567. doi:10.1038/nature14656 nature14656 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katta V, Chait BT (1991) Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 5(4):214–217. doi:10.1002/rcm.1290050415

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109(45):18407–18412. doi:10.1073/pnas.1216304109 1216304109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497(7447):142–146. doi:10.1038/nature12133 nature12133 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Yun Y, Kim HR, Seo MD, Chung KY (2015) Different conformational dynamics of various active states of beta-arrestin1 analyzed by hydrogen/deuterium exchange mass spectrometry. J Struct Biol 190(2):250–259. doi:10.1016/j.jsb.2015.04.006 S1047-8477(15)00078-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ (2001) Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98(4):1601–1606. doi:10.1073/pnas.041608198 041608198 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann L, Tong X, Pan Y (2008) Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. J Mass Spectrom 43(8):1021–1036. doi:10.1002/jms.1435

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96(7):3712–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA, Peterson YK, Laporte SA, Luttrell LM (2016) The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature 531(7596):665–668. doi:10.1038/nature17154 nature17154 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse MJ, Hoffmann C (2014) Arrestin interactions with G protein-coupled receptors. Handb Exp Pharmacol 219:15–56. doi:10.1007/978-3-642-41199-1_2

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Miller WE (2013) Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci 118:115–147. doi:10.1016/B978-0-12-394440-5.00005-X B978-0-12-394440-5.00005-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Marcsisin SR, Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397(3):967–972. doi:10.1007/s00216-010-3556-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem 274(16):10677–10680

    Article  CAS  PubMed  Google Scholar 

  • Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem 282(29):21370–21381. doi:10.1074/jbc.M611483200 M611483200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ (2011) Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci Signal 4(185):ra51. doi:10.1126/scisignal.2001707 4/185/ra51 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin AB, Lohse MJ, Hoffmann C (2016) Beta-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531(7596):661–664. doi:10.1038/nature17198 nature17198 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275(22):17201–17210. doi:10.1074/jbc.M910348199 M910348199 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ostermaier MK, Schertler GF, Standfuss J (2014) Molecular mechanism of phosphorylation-dependent arrestin activation. Curr Opin Struct Biol 29:143–151. doi:10.1016/j.sbi.2014.07.006 S0959-440X(14)00078-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Lee SY, Kim HR, Seo MD, Chung KY (2016) Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch Pharm Res 39(3):293–301. doi:10.1007/s12272-016-0712-1 10.1007/s12272-016-0712-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) Beta-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533. doi:10.1016/j.tips.2011.05.002 S0165-6147(11)00080-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141. doi:10.1038/nature12120 nature12120 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Singh G, Ghosh E (2014a) Emerging structural insights into biased GPCR signaling. Trends Biochem Sci 39(12):594–602. doi:10.1016/j.tibs.2014.10.001 S0968-0004(14)00183-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL Jr, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014b) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512(7513):218–222. doi:10.1038/nature13430 nature13430 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JS, Rajagopal S (2016) The beta-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem 291(17):8969–8977. doi:10.1074/jbc.R115.713313 R115.713313 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Gupta B, Gupta C, Shukla AK (2015) Emerging functional divergence of beta-arrestin isoforms in GPCR function. Trends Endocrinol Metab 26(11):628–642. doi:10.1016/j.tem.2015.09.001 S1043-2760(15)00175-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278(8):6258–6267. doi:10.1074/jbc.M212231200 M212231200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, Crombie AL, Soergel DG, Lark MW (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35(7):308–316. doi:10.1016/j.tips.2014.04.007 S0165-6147(14)00069-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface. Structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279(2):1262–1268. doi:10.1074/jbc.M308834200 M308834200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288(17):11741–11750. doi:10.1074/jbc.M113.450031 M113.450031 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West GM, Chien EY, Katritch V, Gatchalian J, Chalmers MJ, Stevens RC, Griffin PR (2011) Ligand-dependent perturbation of the conformational ensemble for the GPCR beta2 adrenergic receptor revealed by HDX. Structure 19(10):1424–1432. doi:10.1016/j.str.2011.08.001 S0969-2126(11)00278-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17(3):126–139. doi:10.1016/j.molmed.2010.11.004 S1471-4914(10)00182-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Chung J, Wall A (2015) The power of mass spectrometry in structural characterization of GPCR signaling. J Recept Signal Transduct Res 35(3):213–219. doi:10.3109/10799893.2015.1072979

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY, Sun JP (2015) Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun 6:8202. doi:10.1038/ncomms9202 ncomms9202 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun Y, Kim DK, Seo MD, Kim KM, Chung KY (2015) Different conformational dynamics of beta-arrestin1 and beta-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry. Biochem Biophys Res Commun 457(1):50–57. doi:10.1016/j.bbrc.2014.12.079 S0006-291X(14)02261-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol 406(3):467–478. doi:10.1016/j.jmb.2010.12.034 S0022-2836(10)01366-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci USA 110(3):942–947. doi:10.1073/pnas.1215176110 1215176110 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS (2014) Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 289(30):20991–21002. doi:10.1074/jbc.M114.560680 M114.560680 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Young Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Park, J.Y., Kim, H.R., Chung, K.Y. (2017). Localization of Conformational Dynamics of Arrestins by HDX-MS. In: Gurevich, V. (eds) The Structural Basis of Arrestin Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-57553-7_9

Download citation

Publish with us

Policies and ethics