Advertisement

How Arrestin Recognizes and Binds Active GPCRs

  • Martha E. SommerEmail author
Chapter

Abstract

Arrestins are structurally flexible and functionally versatile proteins that regulate the activity of hundreds of different G protein-coupled receptors (GPCRs). A hallmark of arrestin function is that these proteins are only activated for binding the active receptor upon interaction with receptor-attached phosphate groups. Recent years have yielded crystal structures of pre-activated arrestins and arrestin in complex with an active receptor, which provide insight into the arrestin activation mechanism. At the same time, functional studies indicate that arrestin employs different binding modes along the path to tight receptor binding, and the structure of the arrestin-receptor complex is modulated by the activation and phosphorylation state of the active receptor. In this chapter we discuss our current understanding of the receptor-binding mechanism of arrestin, from the initial interaction with the phosphorylated receptor to the structural transformation required for tight binding to the active receptor.

Keywords

Arrestin Rhodopsin GPCR Fluorescence spectroscopy Mutagenesis 

References

  1. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286(2):1420–1428CrossRefPubMedGoogle Scholar
  2. Beyriere F, Sommer ME, Szczepek M, Bartl FJ, Hofmann KP, Heck M, Ritter E (2015) Formation and decay of the arrestin-rhodopsin complex in native disc membranes. J Biol Chem 290(20):12919–12928CrossRefPubMedPubMedCentralGoogle Scholar
  3. Binder BM, Biernbaum MS, Bownds MD (1990) Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination. J Biol Chem 265(25):15333–15340PubMedGoogle Scholar
  4. Binder BM, O’Connor TM, Bownds MD, Arshavsky VY (1996) Phosphorylation of non-bleached rhodopsin in intact retinas and living frogs. J Biol Chem 271(33):19826–19830CrossRefPubMedGoogle Scholar
  5. Elgeti M, Rose AS, Bartl FJ, Hildebrand PW, Hofmann KP, Heck M (2013) Precision vs flexibility in GPCR signaling. J Am Chem Soc 135(33):12305–12312. doi: 10.1021/ja405133k CrossRefPubMedGoogle Scholar
  6. Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391(6670):918–921. doi: 10.1038/36147 CrossRefPubMedGoogle Scholar
  7. Granzin J, Cousin A, Weirauch M, Schlesinger R, Büldt G, Batra-Safferling R (2012) Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 416:611–618CrossRefPubMedGoogle Scholar
  8. Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R (2015) Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 5:15808. doi: 10.1038/srep15808 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268(16):11628–11638PubMedGoogle Scholar
  10. Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin. J Biol Chem 270(11):6010–6016CrossRefPubMedGoogle Scholar
  11. Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 272(46):28849–28852CrossRefPubMedGoogle Scholar
  12. Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retinal Eye Res 30(6):405–430. doi: 10.1016/j.preteyeres.2011.07.002 CrossRefGoogle Scholar
  13. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9(9):869–880CrossRefPubMedGoogle Scholar
  14. Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281(6):3458–3462. doi: 10.1074/jbc.M512148200 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci U S A 103(13):4900–4905. doi: 10.1073/pnas.0600733103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hanson SM, Dawson ES, Francis DJ, Van Eps N, Klug CS, Hubbell WL, Meiler J, Gurevich VV (2008) A model for the solution structure of the rod arrestin tetramer. Structure 16(6):924–934. doi: 10.1016/j.str.2008.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hessel E, Herrmann A, Muller P, Schnetkamp PP, Hofmann KP (2000) The transbilayer distribution of phospholipids in disc membranes is a dynamic equilibrium evidence for rapid flip and flop movement. Eur J Biochem 267(5):1473–1483CrossRefPubMedGoogle Scholar
  18. Hessel E, Muller P, Herrmann A, Hofmann KP (2001) Light-induced reorganization of phospholipids in rod disc membranes. J Biol Chem 276(4):2538–2543. doi: 10.1074/jbc.M009061200 CrossRefPubMedGoogle Scholar
  19. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97(2):257–269CrossRefPubMedGoogle Scholar
  20. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523(7562):561–567. doi: 10.1038/nature14656 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci U S A 109(45):18407–18412. doi: 10.1073/pnas.1216304109 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497(7447):142–146. doi: 10.1038/nature12133 CrossRefPubMedGoogle Scholar
  23. Kirchberg K, Kim TY, Moller M, Skegro D, Dasara Raju G, Granzin J, Buldt G, Schlesinger R, Alexiev U (2011) Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci U S A 108(46):18690–18695. doi: 10.1073/pnas.1015461108 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lally CC, Bauer B, Selent J, Sommer ME (2017) C-edge loops of arrestin function as a membrane anchor. Nat Commun 8:14258. doi: 10.1038/ncomms14258
  25. Lee KA, Nawrot M, Garwin GG, Saari JC, Hurley JB (2010) Relationships among visual cycle retinoids, rhodopsin phosphorylation, and phototransduction in mouse eyes during light and dark adaptation. Biochemistry 49(11):2454–2463. doi: 10.1021/bi1001085 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Milano SK, Kim YM, Stefano FP, Benovic JL, Brenner C (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 281(14):9812–9823. doi: 10.1074/jbc.M512703200 CrossRefPubMedGoogle Scholar
  27. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ (2011) Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci Signal 4(185):ra51. doi: 10.1126/scisignal.2001707 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin AB, Lohse MJ, Hoffmann C (2016) Beta-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531(7596):661–664. doi: 10.1038/nature17198 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (2001) Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*. J Biol Chem 276(22):19452–19460. doi: 10.1074/jbc.M101450200 CrossRefPubMedGoogle Scholar
  30. Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J (2014a) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1319402111 PubMedPubMedCentralGoogle Scholar
  31. Ostermaier MK, Schertler GF, Standfuss J (2014b) Molecular mechanism of phosphorylation-dependent arrestin activation. Curr Opin Struct Biol 29C:143–151. doi: 10.1016/j.sbi.2014.07.006 CrossRefGoogle Scholar
  32. Palczewski K, Buczylko J, Imami NR, McDowell JH, Hargrave PA (1991a) Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J Biol Chem 266(23):15334–15339PubMedGoogle Scholar
  33. Palczewski K, Pulvermüller A, Buczylko J, Gutmann C, Hofmann KP (1991b) Binding of inositol phosphates to arrestin. FEBS Lett 295(1–3):195–199CrossRefPubMedGoogle Scholar
  34. Palczewski K, Pulvermüller A, Buczylko J, Hofmann KP (1991c) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266(28):18649–18654PubMedGoogle Scholar
  35. Palczewski K, Buczylko J, Ohguro H, Annan RS, Carr SA, Crabb JW, Kaplan MW, Johnson RS, Walsh KA (1994) Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Protein Sci 3(2):314–324CrossRefPubMedPubMedCentralGoogle Scholar
  36. Peterhans C, Lally CC, Ostermaier MK, Sommer ME, Standfuss J (2016) Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Sci Rep 6:28686. doi: 10.1038/srep28686 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pulvermüller A, Maretzki D, Rudnicka-Nawrot M, Smith WC, Palczewski K, Hofmann KP (1997) Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin. Biochemistry 36(30):9253–9260. doi: 10.1021/bi970772g CrossRefPubMedGoogle Scholar
  38. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Ann Rev Pharmacol Toxicol 52:179–197. doi: 10.1146/annurev.pharmtox.010909.105800 CrossRefGoogle Scholar
  39. Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci U S A 102(5):1448–1453. doi: 10.1073/pnas.0409534102 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schleicher A, Kühn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28(4):1770–1775CrossRefPubMedGoogle Scholar
  41. Schröder K, Pulvermüller A, Hofmann KP (2002) Arrestin and its splice variant Arr1-370A(p44). Mechanism and biological role of their interaction with rhodopsin. J Biol Chem 277(46):43987–43996. doi: 10.1074/jbc.M206211200 CrossRefPubMedGoogle Scholar
  42. Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci U S A 106(16):6650–6655. doi: 10.1073/pnas.0901083106 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shi GW, Chen J, Concepcion F, Motamedchaboki K, Marjoram P, Langen R (2005) Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells. J Biol Chem 280(50):41184–41191. doi: 10.1074/jbc.M506935200 (M506935200)CrossRefPubMedGoogle Scholar
  44. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141. doi: 10.1038/nature12120 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL Jr, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512(7513):218–222. doi: 10.1038/nature13430 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sommer ME, Smith WC, Farrens DL (2006) Dynamics of arrestin-rhodopsin interactions: acidic phospholipids enable binding of arrestin to purified rhodopsin in detergent. J Biol Chem 281(14):9407–9417. doi: 10.1074/jbc.M510037200 CrossRefPubMedGoogle Scholar
  47. Sommer ME, Hofmann KP, Heck M (2012) Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat Commun 3:995. doi: 10.1038/ncomms2000 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sommer ME, Hofmann KP, Heck M (2014) Not just signal shutoff: the protective role of arrestin-1 in rod cells. Handb Exp Pharmacol 219:101–116. doi: 10.1007/978-3-642-41199-1_5 CrossRefPubMedGoogle Scholar
  49. Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801. doi: 10.1038/ncomms5801 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location… site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29(8):413–420. doi: 10.1016/j.tips.2008.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278(8):6258–6267. doi: 10.1074/jbc.M212231200 CrossRefPubMedGoogle Scholar
  52. Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez MG, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation. J Biol Chem 275(52):41049–41057. doi: 10.1074/jbc.M007159200 CrossRefPubMedGoogle Scholar
  53. Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem 282(44):32075–32083. doi: 10.1074/jbc.M706057200 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Vishnivetskiy SA, Francis D, Van Eps N, Kim M, Hanson SM, Klug CS, Hubbell WL, Gurevich VV (2010) The role of arrestin alpha-helix I in receptor binding. J Mol Biol 395(1):42–54. doi: 10.1016/j.jmb.2009.10.058 CrossRefPubMedGoogle Scholar
  55. Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem. doi: 10.1074/jbc.M113.450031 PubMedCentralGoogle Scholar
  56. Wilson CJ, Copeland RA (1997) Spectroscopic characterization of arrestin interactions with competitive ligands: study of heparin and phytic acid binding. J Protein Chem 16(8):755–763CrossRefPubMedGoogle Scholar
  57. Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR (2010) Elucidation of inositol hexaphosphate and heparin interaction sites and conformational changes in arrestin-1 by solution nuclear magnetic resonance. Biochemistry 49(49):10473–10485. doi: 10.1021/bi101596g CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci U S A 110(3):942–947. doi: 10.1073/pnas.1215176110 CrossRefPubMedGoogle Scholar
  59. Zindel D, Butcher AJ, Al-Sabah S, Lanzerstorfer P, Weghuber J, Tobin AB, Bunemann M, Krasel C (2014) Engineered hyperphosphorylation of the beta2-adrenoceptor prolongs arrestin-3 binding and induces arrestin internalization. Mol Pharmacol. doi: 10.1124/mol.114.095422 PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Medical Physics and Biophysics (CC2)Charité Medical UniversityBerlinGermany

Personalised recommendations