Phosphate Sensor and Construction of Phosphorylation-Independent Arrestins



Arrestins preferentially bind active phosphorylated GPCRs. Receptor binding is associated with a global conformational change in arrestins. These findings lead to a model where arrestins have distinct sensors for the receptor-attached phosphates and active receptor conformation, and that simultaneous engagement of both sensors by corresponding parts of the receptor induces binding-associated conformational change. Receptor-attached phosphates perturb two intra-molecular interactions in arrestins that stabilize their basal conformation: the polar core between the two domains and the three-element interaction that anchors the arrestin C-tail. Indeed, mutations that disrupt those interactions yield “enhanced” mutants capable of binding active receptors regardless of their phosphorylation. Structural and functional characterization of these mutants lead us to propose an allosteric regulation model for arrestin. Further, it was proposed that these mutants can compensate for defects in GPCR phosphorylation, including those caused by mutations, thereby serving as tools for gene therapy of these gain-of-function GPCR mutations. This idea so far was tested only in the visual system, where partial compensation for lack of rhodopsin phosphorylation was reported. These proof-of-concept experiments suggested that this approach works, but more powerful phosphorylation-independent mutants are needed in photoreceptors using the fastest, most sensitive, and most demanding GPCR-driven signaling system.


Arrestin GPCR Phosphorylation Congenital disorders Gene therapy 


  1. Azevedo AW, Doan T, Moaven H, Sokal I, Baameur F, Vishnivetskiy SA, Homan KT, Tesmer JJ, Gurevich VV, Chen J, Rieke F (2015) C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. Elife 4:05981CrossRefGoogle Scholar
  2. Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500CrossRefPubMedGoogle Scholar
  3. Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634PubMedPubMedCentralGoogle Scholar
  4. Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV (2002) Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 277:9043–9048CrossRefPubMedGoogle Scholar
  5. Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI (1995) Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267:374–377CrossRefPubMedGoogle Scholar
  6. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB, Baylor DA, Simon MI (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci U S A 96:3718–3722CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10:360–362CrossRefPubMedGoogle Scholar
  8. Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012) Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 287:29495–29505CrossRefPubMedPubMedCentralGoogle Scholar
  9. Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921CrossRefPubMedGoogle Scholar
  10. Granzin J, Cousin A, Weirauch M, Schlesinger R, Buldt G, Batra-Safferling R (2012) Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 416:611–618CrossRefPubMedGoogle Scholar
  11. Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R (2015) Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 5:15808CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506CrossRefPubMedGoogle Scholar
  13. Gurevich VV, Benovic JL (1992) Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction. J Biol Chem 267:21919–21923PubMedGoogle Scholar
  14. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638PubMedGoogle Scholar
  15. Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin. J Biol Chem 270:6010–6016CrossRefPubMedGoogle Scholar
  16. Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169PubMedGoogle Scholar
  17. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111CrossRefPubMedGoogle Scholar
  18. Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G protein-coupled receptors. Pharm Ther 110:465–502CrossRefGoogle Scholar
  19. Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720–731CrossRefPubMedGoogle Scholar
  20. Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 272:28849–28852CrossRefPubMedGoogle Scholar
  21. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880CrossRefPubMedGoogle Scholar
  22. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269CrossRefPubMedGoogle Scholar
  23. Johnson WC Jr (1990) Protein secondary structure and circular dichroism: a practical guide. Proteins 7:205–214CrossRefPubMedGoogle Scholar
  24. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MHE, Zhang C, Moeller A, West GM, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhuty S, Conrad S, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JCH, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin determined by femtosecond X-ray laser. Nature 523:561–567CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146CrossRefPubMedGoogle Scholar
  26. Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV (1999) Targeted construction of phosphorylation-independent b-arrestin mutants with constitutive activity in cells. J Biol Chem 274:6831–6834CrossRefPubMedGoogle Scholar
  27. Kuhn H (1978) Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17:4389–4395CrossRefPubMedGoogle Scholar
  28. Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478CrossRefPubMedGoogle Scholar
  29. Mendez A, Burns ME, Roca A, Lem J, Wu LW, Simon MI, Baylor DA, Chen J (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28:153–164CrossRefPubMedGoogle Scholar
  30. Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328CrossRefPubMedGoogle Scholar
  31. Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J (2013) Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci U S A 110:9463–9468CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mushegian AR, Vishnivetskiy SA, Gurevich VV (2000) Conserved phosphoprotein interaction motif is functionally interchangeable between ataxin-7 and arrestins. Biochemistry 39:6809–6813CrossRefPubMedGoogle Scholar
  33. Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46Google Scholar
  34. Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654PubMedGoogle Scholar
  35. Palczewski K, Riazance-Lawrence JH, Johnson WC Jr (1992) Structural properties of arrestin studied by chemical modification and circular dichroism. Biochemistry 31:3902–3906CrossRefPubMedGoogle Scholar
  36. Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775CrossRefPubMedGoogle Scholar
  37. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206CrossRefPubMedGoogle Scholar
  38. Smith WC, Milam AH, Dugger D, Arendt A, Hargrave PA, Palczewski K (1994) A splice variant of arrestin. Molecular cloning and localization in bovine retina. J Biol Chem 269:15407–15410PubMedGoogle Scholar
  39. Song X, Vishnivetskiy SA, Gross OP, Emelianoff K, Mendez A, Chen J, Gurevich EV, Burns ME, Gurevich VV (2009) Enhanced arrestin facilitates recovery and protects rod photoreceptors deficient in rhodopsin phosphorylation. Curr Biol 19:700–705CrossRefPubMedPubMedCentralGoogle Scholar
  40. Song X, Seo J, Baameur F, Vishnivetskiy SA, Chen Q, Kook S, Kim M, Brooks EK, Altenbach C, Hong Y, Hanson SM, Palazzo MC, Chen J, Hubbell WL, Gurevich EV, Gurevich VV (2013) Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Cell Signal 25:2613–2624CrossRefPubMedGoogle Scholar
  41. Stoy H, Gurevich VV (2015) How genetic errors in GPCRs affect their function: possible therapeutic strategies. Genes Dis 2:108–132CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 Å: evolution of receptor specificity. J Mol Biol 354:1069–1080CrossRefPubMedGoogle Scholar
  43. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454CrossRefPubMedGoogle Scholar
  44. Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule: implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057CrossRefPubMedGoogle Scholar
  45. Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem 282:32075–32083CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV (2013) Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 288:11741–11750CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509CrossRefPubMedGoogle Scholar
  48. Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15:175–178CrossRefPubMedGoogle Scholar
  49. Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of PharmacologyVanderbilt UniversityNashvilleUSA

Personalised recommendations