Advertisement

The Arrestin-Receptor Complex: Exciting Answers and New Questions

  • Yanyong Kang
  • Karsten Melcher
  • Vsevolod V. GurevichEmail author
  • H. Eric XuEmail author
Chapter

Abstract

To better understand the molecular mechanism of arrestin-mediated signaling, detailed structural information on the arrestin-receptor complex is necessary. Biochemical studies provided some information about how arrestins are recruited by active receptors. The X-ray laser crystal structure of the rhodopsin–arrestin complex reveals unique structural features, which include the asymmetric binding of arrestin to rhodopsin. Arrestin adopts the active conformation, with a ~20° rotation between the N- and C-domains of the molecule, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. Rhodopsin–arrestin complex gives important insights into how G protein–coupled receptor signaling is terminated by arrestin and reveals structural basis of the mechanism of arrestin-biased signaling.

Keywords

Crystal structure GPCR Rhodopsin Arrestin Biased signaling 

References

  1. Azevedo AW, Doan T, Moaven H, Sokal I, Baameur F, Vishnivetskiy SA, Homan KT, Tesmer JJ, Gurevich VV, Chen J, Rieke F (2015) C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. Elife 4:eLife.05981. doi: 10.7554/eLife.05981 CrossRefGoogle Scholar
  2. Bayburt TH, Vishnivetskiy SA, McLean M, Morizumi T, Huang C-C, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Rhodopsin monomer is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428CrossRefPubMedGoogle Scholar
  3. Chen Q, Zhuo Y, Kim M, Hanson SM, Francis DJ, Vishnivetskiy SA, Altenbach C, Klug CS, Hubbell WL, Gurevich VV (2014) Self-association of arrestin family members. Handb Exp Pharmacol 219:205–223CrossRefPubMedPubMedCentralGoogle Scholar
  4. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510CrossRefPubMedGoogle Scholar
  5. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770CrossRefPubMedGoogle Scholar
  6. Fotiadis D, Jastrzebska B, Philippsen A, Muller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16:252–259CrossRefPubMedGoogle Scholar
  7. Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV (2012a) Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 287:9028–9040CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012b) Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 287:29495–29505CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV (2014) Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell Signal 26:1523–1531CrossRefPubMedPubMedCentralGoogle Scholar
  10. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450CrossRefPubMedGoogle Scholar
  11. Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921CrossRefPubMedGoogle Scholar
  12. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: Sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638PubMedGoogle Scholar
  13. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111CrossRefPubMedGoogle Scholar
  14. Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gurevich VV, Gurevich EV (2008a) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gurevich VV, Gurevich EV (2008b) How and why do GPCRs dimerize? Trends Pharmacol Sci 29:234–240CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gurevich VV, Gurevich EV (2014) Extensive shape shifting underlies functional versatility of arrestins. Curr Opin Cell Biol 27:1–9CrossRefPubMedGoogle Scholar
  18. Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69CrossRefPubMedGoogle Scholar
  19. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. Structure 9:869–880CrossRefPubMedGoogle Scholar
  20. Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hanson SM, Dawson ES, Francis DJ, Van Eps N, Klug CS, Hubbell WL, Meiler J, Gurevich VV (2008a) A model for the solution structure of the rod arrestin tetramer. Structure 16:924–934CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanson SM, Vishnivetskiy SA, Hubbell WL, Gurevich VV (2008b) Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Biochemistry 47:1070–1075CrossRefPubMedGoogle Scholar
  23. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269CrossRefPubMedGoogle Scholar
  24. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kang Y, Gao X, Zhou XE, He Y, Melcher K, Xu HE (2016) A structural snapshot of the rhodopsin-arrestin complex. FEBS J 283:816–821CrossRefPubMedGoogle Scholar
  26. Karaki S, Becamel C, Murat S, Mannoury la Cour C, Millan MJ, Prezeau L, Bockaert J, Marin P, Vandermoere F (2014) Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 13:1273–1285CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV (2011) Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 50:2235–2242CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J et al (2012) Conformation of receptor-bound visual arrestin. Proc Nat Acad Sci USA 109:18407–18412CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146CrossRefPubMedGoogle Scholar
  30. Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131CrossRefPubMedGoogle Scholar
  31. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Nat Acad Sci USA 96:3712–3717CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee KB, Ptasienski JA, Pals-Rylaarsdam R, Gurevich VV, Hosey MM (2000) Arrestin binding to the M2 muscarinic acetylcholine receptor is precluded by an inhibitory element in the third intracellular loop of the receptor. J Biol Chem 275:9284–9289CrossRefPubMedGoogle Scholar
  33. Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328CrossRefPubMedGoogle Scholar
  34. Milano SK, Kim YM, Stefano FP, Benovic JL, Brenner C (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 281:9812–9823CrossRefPubMedGoogle Scholar
  35. Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem 282:21370–21381CrossRefPubMedGoogle Scholar
  36. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR et al (2011) Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 4:ra51CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pals-Rylaarsdam R, Gurevich VV, Lee KB, Ptasienski J, Benovic JL, Hosey MM (1997) Internalization of the m2 muscarinic acetylcholine receptor: arrestin-independent and -dependent pathways. J Biol Chem 272:23682–23689CrossRefPubMedGoogle Scholar
  38. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387CrossRefPubMedGoogle Scholar
  39. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY et al (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN et al (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512:218–222CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sommer ME, Hofmann KP, Heck M (2011) Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 286:7359–7369CrossRefPubMedGoogle Scholar
  42. Sommer ME, Hofmann KP, Heck M (2014) Not just signal shutoff: the protective role of arrestin-1 in rod cells. Handb Exp Pharmacol 219:101–116CrossRefPubMedGoogle Scholar
  43. Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin-1 expression in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49CrossRefPubMedGoogle Scholar
  44. Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD, Schertler GF (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–660CrossRefPubMedPubMedCentralGoogle Scholar
  45. Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY (2006) Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 26:1146–1153CrossRefPubMedGoogle Scholar
  46. Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3Å: evolution of receptor specificity. J Mol Biol 354:1069–1080CrossRefPubMedGoogle Scholar
  47. Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME et al (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29:413–420CrossRefPubMedCentralGoogle Scholar
  49. Tsukamoto H, Sinha A, Dewitt M, Farrens DL (2010) Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol 399:501–511CrossRefPubMedGoogle Scholar
  50. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454CrossRefPubMedGoogle Scholar
  51. Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454CrossRefPubMedGoogle Scholar
  52. Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 83:1174–1178CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhou XE, Melcher K, Xu HE (2012) Structure and activation of rhodopsin. Acta Pharmacol Sin 33:291–299CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhuang T, Chen Q, Cho M-K, Vishnivetskiy SA, Iverson TI, Gurevich VV, Hubbell WL (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Nat Acad Sci USA 110:942–947CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Structural Sciences, Center for Structural Biology and Drug DiscoveryVan Andel Research InstituteGrand RapidsUSA
  2. 2.Department of PharmacologyVanderbilt UniversityNashvilleUSA

Personalised recommendations