Active Conformations of Arrestins: Expected and Unexpected Changes

  • Abhishek Bandyopadhyay
  • Ya Zhuo
  • Wayne L. Hubbell
  • Candice S. KlugEmail author
  • Vsevolod V. GurevichEmail author
  • Oliver P. ErnstEmail author


The idea that the conformation of the receptor-bound arrestin is dramatically different from that of a free arrestin in solution emerged soon after the discovery of the first member of the family, visual arrestin-1. However, most of the evidence for this emerged in the last few years from studies using biophysical methods and X-ray crystallography. The similarity of the conformational changes in different arrestin subtypes detected by various methods suggests that these rearrangements accompany arrestin “activation”, i.e., the transition into the high-affinity receptor-binding state. The key changes include the release of the arrestin C-terminal tail, the twisting of the two arrestin domains relative to each other, and the changes in several flexible loops in the central “crest” on the receptor-binding surface and elsewhere in the molecule. From a signaling standpoint, the changes on the arrestin side not involved in receptor contact appear more important, as they allow the non-receptor partners to discriminate between free and receptor-bound forms of arrestins. The identification of these changes facilitates elucidation of the structural basis of arrestin-mediated signaling, including mapping the binding sites for various signaling proteins.


Arrestin Conformation Protein–protein interactions GPCRs Cell signaling 



This work was supported by the NIH RO1 EY011500, GM109955, GM077561 (VVG), EY05216 and the Jules Stein Professorship Endowment (WLH), and Canada Excellence Research Chairs program (OPE). OPE is the Anne and Max Tanenbaum Chair at University of Toronto. We thank Dr. Ned Van Eps for comments on the manuscript.


  1. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci U S A 105:7439–7444CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bayburt TH, Vishnivetskiy SA, McLean M, Morizumi T, Huang C-C, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Rhodopsin monomer is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428CrossRefPubMedGoogle Scholar
  3. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A 84:8879–8882CrossRefPubMedPubMedCentralGoogle Scholar
  4. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655CrossRefPubMedGoogle Scholar
  5. Feuerstein SE, Pulvermuller A, Hartmann R, Granzin J, Stoldt M, Henklein P, Ernst OP, Heck M, Willbold D, Koenig BW (2009) Helix formation in arrestin accompanies recognition of photoactivated rhodopsin. Biochemistry 48:10733–10742CrossRefPubMedGoogle Scholar
  6. Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921CrossRefPubMedGoogle Scholar
  7. Granzin J, Cousin A, Weirauch M, Schlesinger R, Büldt G, Batra-Safferling R (2012) Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 416:611–618CrossRefPubMedGoogle Scholar
  8. Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R (2015) Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 5:15808CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506CrossRefPubMedGoogle Scholar
  10. Gurevich VV, Benovic JL (1992) Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction. J Biol Chem 267:21919–21923PubMedGoogle Scholar
  11. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638PubMedGoogle Scholar
  12. Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin. J Biol Chem 270:6010–6016CrossRefPubMedGoogle Scholar
  13. Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169PubMedGoogle Scholar
  14. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111CrossRefPubMedGoogle Scholar
  15. Gurevich EV, Gurevich VV (2006a) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gurevich VV, Gurevich EV (2006b) The structural basis of arrestin-mediated regulation of G protein-coupled receptors. Pharmacol Ther 110:465–502CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gurevich VV, Chen C-Y, Kim CM, Benovic JL (1994) Visual arrestin binding to rhodopsin: intramolecular interaction between the basic N-terminus and acidic C-terminus of arrestin may regulate binding selectivity. J Biol Chem 269:8721–8727PubMedGoogle Scholar
  18. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880CrossRefPubMedGoogle Scholar
  19. Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci U S A 103:4900–4905CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song X, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007a) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol BiolGoogle Scholar
  21. Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007b) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci U S A 104:3125–3128CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007c) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269CrossRefPubMedGoogle Scholar
  24. Hubbard R, St George RC (1958) The rhodopsin system of the squid. J Gen Physiol 41:501–528CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J et al (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci U S A 109:18407–18412CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146CrossRefPubMedGoogle Scholar
  28. Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV (1999) Targeted construction of phosphorylation-independent b-arrestin mutants with constitutive activity in cells. J Biol Chem 274:6831–6834CrossRefPubMedGoogle Scholar
  29. Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131CrossRefPubMedGoogle Scholar
  30. Kuhn H (1978) Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17:4389–4395CrossRefPubMedGoogle Scholar
  31. Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478CrossRefPubMedGoogle Scholar
  32. Lin FT, Krueger KM, Kendall HE, Daaka Y, Fredericks ZL, Pitcher JA, Lefkowitz RJ (1997) Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem 272:31051–31057CrossRefPubMedGoogle Scholar
  33. Lin FT, Chen W, Shenoy S, Cong M, Exum ST, Lefkowitz RJ (2002) Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry 41:10692–10699CrossRefPubMedGoogle Scholar
  34. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550CrossRefPubMedGoogle Scholar
  35. Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 267:8558–8564PubMedGoogle Scholar
  36. Mayeenuddin LH, Mitchell J (2003) Squid visual arrestin: cDNA cloning and calcium-dependent phosphorylation by rhodopsin kinase (SQRK). J Neurochem 85:592–600CrossRefPubMedGoogle Scholar
  37. Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328CrossRefPubMedGoogle Scholar
  38. Modzelewska A, Filipek S, Palczewski K, Park PS (2006) Arrestin interaction with rhodopsin: conceptual models. Cell Biochem Biophys 46:1–15CrossRefPubMedGoogle Scholar
  39. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367CrossRefPubMedGoogle Scholar
  40. Ohguro H, Yoshida N, Shindou H, Crabb JW, Palczewski K, Tsuda M (1998) Identification of a single phosphorylation site within octopus rhodopsin. Photochem Photobiol 68:824–828CrossRefPubMedGoogle Scholar
  41. Palczewski K, Buczyłko J, Imami NR, McDowell JH, Hargrave PA (1991a) Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J Biol Chem 266:15334–15339PubMedGoogle Scholar
  42. Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991b) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654PubMedGoogle Scholar
  43. Peterhans C, Lally CC, Ostermaier MK, Sommer ME, Standfuss J (2016) Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Sci Rep 6:28686CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pulvermuller A, Maretzki D, Rudnicka-Nawrot M, Smith WC, Palczewski K, Hofmann KP (1997) Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin. Biochemistry 36:9253–9260CrossRefPubMedGoogle Scholar
  45. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555CrossRefPubMedPubMedCentralGoogle Scholar
  46. Robinson KA (2015) Arrestin interactions with rhodopsin in the squid visual system. In: Graduate department of pharmacology and toxicology. University of TorontoGoogle Scholar
  47. Robinson KA, Ou WL, Guan X, Sugamori KS, Bandyopadhyay A, Ernst OP, Mitchell J (2015) The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system. J Neurochem 135:1129–1139CrossRefPubMedGoogle Scholar
  48. Ryba NJ, Findlay JB, Reid JD (1993) The molecular cloning of the squid (Loligo forbesi) visual Gq-alpha subunit and its expression in Saccharomyces cerevisiae. Biochem J 292(Pt 2):333–341CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775CrossRefPubMedGoogle Scholar
  50. Shimamura T, Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, Miyano M (2008) Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 283:17753–17756CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY et al (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141CrossRefPubMedPubMedCentralGoogle Scholar
  52. Smith WC, Milam AH, Dugger D, Arendt A, Hargrave PA, Palczewski K (1994) A splice variant of arrestin. Molecular cloning and localization in bovine retina. J Biol Chem 269:15407–15410PubMedGoogle Scholar
  53. Sommer ME, Smith WC, Farrens DL (2005) Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events. J Biol Chem 280:6861–6871CrossRefPubMedGoogle Scholar
  54. Sommer ME, Hofmann KP, Heck M (2011) Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 286:7359–7369CrossRefPubMedGoogle Scholar
  55. Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 Å: evolution of receptor specificity. J Mol Biol 354:1069–1080CrossRefPubMedGoogle Scholar
  56. Swardfager W, Mitchell J (2007) Purification of visual arrestin from squid photoreceptors and characterization of arrestin interaction with rhodopsin and rhodopsin kinase. J Neurochem 101:223–231CrossRefPubMedGoogle Scholar
  57. Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME et al (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454CrossRefPubMedGoogle Scholar
  59. Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule: implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057CrossRefPubMedGoogle Scholar
  60. Vishnivetskiy SA, Hirsch JA, Velez M-G, Gurevich YV, Gurevich VV (2002) Transition of arrestin in the active receptor-binding state requires an extended interdomain hinge. J Biol Chem 277:43961–43968CrossRefPubMedGoogle Scholar
  61. Vishnivetskiy SA, Francis DJ, Van Eps N, Kim M, Hanson SM, Klug CS, Hubbell WL, Gurevich VV (2010) The role of arrestin alpha-helix I in receptor binding. J Mol Biol 395:42–54CrossRefPubMedGoogle Scholar
  62. Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454CrossRefPubMedGoogle Scholar
  65. Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A 83:1174–1178CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS (2014) Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 289:20991–21002CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of TorontoTorontoCanada
  2. 2.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  3. 3.University of California Los AngelesLos AngelesUSA
  4. 4.Department of PharmacologyVanderbilt UniversityNashvilleUSA
  5. 5.Department of Molecular GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations