Skip to main content

Clustering Based on Dominant Set and Cluster Expansion

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10235))

Included in the following conference series:

Abstract

While numerous clustering algorithms can be found in the literature, existing algorithms are usually afflicted by two major problems. First, the majority of clustering algorithms requires user-specified parameters as input, and their clustering results rely heavily on these parameters. Second, many algorithms generate clusters of only spherical shapes. In this paper we try to solve these two problems based on dominant set and cluster expansion. We firstly use a modified dominant sets clustering algorithm to generate initial clusters which are parameter independent and usually smaller than the real clusters. Then we expand the initial clusters based on two density based clustering algorithms to generate clusters of arbitrary shapes. In experiments on various datasets our algorithm outperforms the original dominant sets algorithm and several other algorithms. It is also shown to be effective in image segmentation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtert, E., Bohm, C., Kroger, P.: DeLi-CLu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. In: International Conference on Knowledge Discovery and Data Mining, pp. 119–128 (2006)

    Google Scholar 

  2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM SIGMOD International Conference on Management of Data, pp. 49–60 (1999)

    Google Scholar 

  3. Brendan, J.F., Delbert, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bulo, S.R., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: a fast evolutionary approach. Comput. Vis. Image Underst. 115(7), 984–995 (2011)

    Article  Google Scholar 

  5. Bulo, S.R., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique enumeration. Image Vis. Comput. 27(7), 911–922 (2009)

    Article  MATH  Google Scholar 

  6. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  MATH  Google Scholar 

  7. Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data: part 1. density-based approach. Chemometr. Intell. Lab. Syst. 56(2), 83–92 (2001)

    Article  Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  9. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 1–17 (2007)

    Article  Google Scholar 

  10. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Disc. Data 1(1), 1–30 (2007)

    Article  Google Scholar 

  11. Hou, J., Gao, H., Li, X.: DSets-DBSCAN: a parameter-free clustering algorithm. IEEE Trans. Image Process. 25(7), 3182–3193 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hou, J., Liu, W., Xu, E., Cui, H.: Towards parameter-independent data clustering and image segmentation. Pattern Recogn. 60, 25–36 (2016)

    Article  Google Scholar 

  13. Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recogn. 46(11), 3129–3139 (2013)

    Article  Google Scholar 

  14. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). doi:10.1007/11590316_1

    Chapter  Google Scholar 

  15. Zemene, E., Pelillo, M.: Interactive image segmentation using constrained dominant sets. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 278–294. Springer, Cham (2016). doi:10.1007/978-3-319-46484-8_17

    Chapter  Google Scholar 

  16. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52(1–2), 91–118 (2003)

    Article  MATH  Google Scholar 

  17. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  18. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014)

    Article  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 167–172 (2000)

    Google Scholar 

  20. Torsello, A., Bulo, S.R., Pelillo, M.: Beyond partitions: allowing overlapping groups in pairwise clustering. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  21. Tripodi, R., Pelillo, M.: Document clustering games. In: The 5th International Conference on Pattern Recognition Applications and Methods, pp. 109–118 (2016)

    Google Scholar 

  22. Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: Detecting conversational groups in images and sequences: a robust game-theoretic approach. Comput. Vis. Image Underst. 143, 11–24 (2016)

    Article  Google Scholar 

  23. Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

    Article  Google Scholar 

  24. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20(1), 68–86 (1971)

    Article  MATH  Google Scholar 

  25. Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clustering. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1450–1457 (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China under Grant No. 61473045 and by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hou, J., Liu, W. (2017). Clustering Based on Dominant Set and Cluster Expansion. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10235. Springer, Cham. https://doi.org/10.1007/978-3-319-57529-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57529-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57528-5

  • Online ISBN: 978-3-319-57529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics