SNE: Signed Network Embedding

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10235)

Abstract

Several network embedding models have been developed for unsigned networks. However, these models based on skip-gram cannot be applied to signed networks because they can only deal with one type of link. In this paper, we present our signed network embedding model called SNE. Our SNE adopts the log-bilinear model, uses node representations of all nodes along a given path, and further incorporates two signed-type vectors to capture the positive or negative relationship of each edge along the path. We conduct two experiments, node classification and link prediction, on both directed and undirected signed networks and compare with four baselines including a matrix factorization method and three state-of-the-art unsigned network embedding models. The experimental results demonstrate the effectiveness of our signed network embedding.

References

  1. 1.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. TPAMI 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  2. 2.
    Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)MATHGoogle Scholar
  3. 3.
    Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI (2016)Google Scholar
  4. 4.
    Chang, S., Han, W., Tang, J., Qi, G.-J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: KDD (2015)Google Scholar
  5. 5.
    Chiang, K.-Y., Hsieh, C.-J., Natarajan, N., Tewari, A., Dhillon, I.S.: Prediction, clustering in signed networks: a local to global perspective. arXiv:1302.5145 [cs] (2013)
  6. 6.
    Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)MATHGoogle Scholar
  7. 7.
    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetMATHGoogle Scholar
  8. 8.
    Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: arXiv:1303.5778 [cs] (2013)
  9. 9.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD (2016)Google Scholar
  10. 10.
    Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946)CrossRefGoogle Scholar
  11. 11.
    Jean, S., Cho, K., Memisevic, R., Bengio, Y.: On using very large target vocabulary for neural machine translation. arXiv:1412.2007 [cs] (2014)
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  13. 13.
    Kumar, S., Spezzano, F., Subrahmanian, V.: VEWS: a Wikipedia vandal early warning system. In: KDD (2015)Google Scholar
  14. 14.
    Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., De Luca, E.W., Albayrak, S.: Spectral analysis of signed graphs for clustering, prediction and visualization. In: SDM (2010)Google Scholar
  15. 15.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  16. 16.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2010)Google Scholar
  17. 17.
    Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classification. In: ACL (2016)Google Scholar
  18. 18.
    Li, Y., Wu, X., Lu, A.: On spectral analysis of directed signed graphs. CoRR, abs/1612.08102 (2016)Google Scholar
  19. 19.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATHGoogle Scholar
  20. 20.
    Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)Google Scholar
  21. 21.
    Mnih, A., Hinton, G.: A scalable hierarchical distributed language model. In: NIPS (2008)Google Scholar
  22. 22.
    Mnih, A., Kavukcuoglu, K.: Learning word embeddings efficiently with noise-contrastive estimation. In: NIPS (2013)Google Scholar
  23. 23.
    Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: ICML (2016)Google Scholar
  24. 24.
    Ou, M., Cui, P., Pei, J., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: KDD (2016)Google Scholar
  25. 25.
    Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI (2016)Google Scholar
  26. 26.
    Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD (2014)Google Scholar
  27. 27.
    Tang, J., Aggarwal, C., Liu, H.: Node classification in signed social networks. In: SDM (2016)Google Scholar
  28. 28.
    Tang, J., Chang, Y., Aggarwal, C., Liu, H.: A survey of signed network mining in social media. arXiv:1511.07569 [physics] (2015)
  29. 29.
    Tang, J., Qu, M., Mei, Q.: PTE: Predictive text embedding through large-scale heterogeneous text networks. In: KDD (2015)Google Scholar
  30. 30.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW (2015)Google Scholar
  31. 31.
    Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.-Y.: Learning deep representations for graph clustering. In: AAAI (2014)Google Scholar
  32. 32.
    Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin deepwalk: discriminative learning of network representation. In: IJCAI (2016)Google Scholar
  33. 33.
    Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: KDD (2016)Google Scholar
  34. 34.
    Wu, L., Wu, X., Lu, A., Li, Y.: On spectral analysis of signed and dispute graphs. In: ICDM, pp. 1049–1054 (2014)Google Scholar
  35. 35.
    Wu, L., Ying, X., Wu, X., Lu, A., Zhou, Z.-H.: Spectral analysis of k-balanced signed graphs. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 6635, pp. 1–12. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20847-8_1 CrossRefGoogle Scholar
  36. 36.
    Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD (2015)Google Scholar
  37. 37.
    Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI (2015)Google Scholar
  38. 38.
    Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2015)CrossRefGoogle Scholar
  39. 39.
    Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tongji UniversityShanghaiChina
  2. 2.University of ArkansasFayettevilleUSA

Personalised recommendations