Skip to main content

Application of collocation method to stochastic conservation laws

  • Chapter
  • First Online:
  • 3098 Accesses

Part of the book series: Applied Mathematical Sciences ((AMS,volume 196))

Abstract

In this chapter we demonstrate how to apply the methods we presented in the previous chapters to stochastic nonlinear conservations laws. Specifically, since the problem is nonlinear we apply the stochastic collocation method (SCM) using Smolyak’s sparse grid for a one-dimensional piston problem and test its computational performance. This is a classical problem in every aerodynamics textbook with an analytical solution if the piston velocity is fixed. However, here we consider a piston with a velocity perturbed by Brownian motion moving into a straight tube filled with a perfect gas at rest. The shock generated ahead of the piston can be located by solving the one-dimensional Euler equations driven by white noise using the Stratonovich or Ito formulations. We apply the Lie-Trotter splitting method before we approximate the Brownian motion with its spectral truncation and subsequently apply stochastic collocation using either sparse grid or the quasi-Monte Carlo (QMC) method. Numerical results verify the Stratonovich-Euler and Ito-Euler models against stochastic perturbation results, and demonstrate the efficiency of sparse grid collocation and QMC for small and large random piston motions, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I. Babuska, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Cho, D. Venturi, G.E. Karniadakis, Statistical analysis and simulation of random shocks in stochastic Burgers equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), 20140080, 21

    Google Scholar 

  3. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Interscience Publishers, Inc., New York, 1948)

    MATH  Google Scholar 

  4. J.-P. Fouque, J. Garnier, G. Papanicolaou, K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability, vol. 56 (Springer, New York, 2007)

    Google Scholar 

  5. A. Genz, B.D. Keister, Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71, 299–309 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, I.H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Holden, N.H. Risebro, Conservation laws with a random source. Appl. Math. Optim. 36, 229–241 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Kocis, W.J. Whiten, Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. 23, 266–294 (1997)

    Article  MATH  Google Scholar 

  10. M.P. Lazarev, P. Prasad, S.K. Sing, An approximate solution of one-dimensional piston problem. Z. Angew. Math. Phys. 46, 752–771 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. O.P. Le Maitre, O.M. Knio, Spectral Methods for Uncertainty Quantification (Springer, Dordrecht, 2010)

    Book  MATH  Google Scholar 

  12. H.W. Liepmann, A. Roshko, Elements of Gasdynamics (Wiley, New York, 1957)

    MATH  Google Scholar 

  13. G. Lin, C.H. Su, G.E. Karniadakis, The stochastic piston problem. Proc. Natl. Acad. Sci. U.S.A. 101, 15840–15845 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Matoušek, On the L 2-discrepancy for anchored boxes. J. Complex. 14, 527–556 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. W.C. Meecham, D.-T. Jeng, Use of the Wiener-Hermite expansion for nearly normal turbulence. J. Fluid Mech. 32, 225–249 (1968)

    Article  MATH  Google Scholar 

  16. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods (SIAM, Philadelphia, PA, 1992)

    Book  MATH  Google Scholar 

  17. P. Pettersson, G. Iaccarino, J. Nordström, A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Pettersson, J. Nordström, G. Iaccarino, Boundary procedures for the time-dependent Burger’s equation under uncertainty. Acta Math. Sci. Ser. B Engl. Ed. 30, 539–550 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. I.H. Sloan, H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. H.J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6, 19–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Tatang, G. McRae, Direct treatment of uncertainty in models of reaction and transport, tech. rep., Department of Chemical Engineering, MIT, 1994

    Google Scholar 

  22. D. Venturi, D. Tartakovsky, A. Tartakovsky, G.E. Karniadakis, exact PDF equations and closure approximations for advective-reactive transport. J. Comput. Phys. 243, 323–343 (2013)

    Google Scholar 

  23. P. Wang, D.M. Tartakovsky, Uncertainty quantification in kinematic-wave models. J. Comput. Phys. 231, 7868–7880 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  25. E. Wong, M. Zakai, On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36, 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Zhang, B. Rozovskii, M.V. Tretyakov, G.E. Karniadakis, A multistage Wiener chaos expansion method for stochastic advection-diffusion-reaction equations. SIAM J. Sci. Comput. 34, A914–A936 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, Z., Karniadakis, G.E. (2017). Application of collocation method to stochastic conservation laws. In: Numerical Methods for Stochastic Partial Differential Equations with White Noise. Applied Mathematical Sciences, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-57511-7_9

Download citation

Publish with us

Policies and ethics