Skip to main content

Multiplicative white noise: The Wick-Malliavin approximation

  • Chapter
  • First Online:
Numerical Methods for Stochastic Partial Differential Equations with White Noise

Part of the book series: Applied Mathematical Sciences ((AMS,volume 196))

  • 3121 Accesses

Abstract

In this chapter, we consider Wiener chaos expansion (WCE) for elliptic equations with multiplicative noise. Unlike the stochastic collocation methods (SCM), a direct application of WCE will lead to a fully coupled linear system. To sparsify the resulting linear system, we present WCE with the use of Ito-Wick product and an approximation/reduction technique called Wick-Malliavin approximation. Specifically, we consider Wick-Malliavin approximation for elliptic equations with lognormal coefficients and use the Wick product for elliptic equations with spatial white noise as coefficients. Numerical results demonstrate that high-order Wick-Malliavin approximation is efficient even when the noise intensity is relatively large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The constant here is usually not the same as in the estimate \(\left \Vert \mathcal{A}^{-1}\mathcal{M}_{k}\right \Vert _{1} \leq C_{k}\left \Vert v\right \Vert _{1}\). Here we use the same constant for simplicity.

References

  1. A. Abdulle, A. Barth, C. Schwab, Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul. 11, 1033–1070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Babuska, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuska, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Barth, C. Schwab, N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119, 123–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. F.E. Benth, J. Gjerde, Convergence rates for finite element approximations of stochastic partial differential equations. Stoch. Stoch. Rep. 63, 313–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bonizzoni, F. Nobile, Perturbation analysis for the Darcy problem with log-normal permeability. SIAM/ASA J. Uncertain. Quant. 2, 223–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Cao, On convergence rate of Wiener-Ito expansion for generalized random variables. Stochastics 78, 179–187 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Y. Cao, Z. Chen, M. Gunzburger, Error analysis of finite element approximations of the stochastic Stokes equations. Adv. Comput. Math. 33, 215–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 216–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Charrier, A. Debussche, Weak truncation error estimates for elliptic PDEs with lognormal coefficients. Stoch. PDE: Anal. Comp. 1, 63–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Charrier, R. Scheichl, A.L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51, 322–352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (SIAM, Philadelphia, PA, 2002)

    Book  MATH  Google Scholar 

  13. M.K. Deb, I.M. Babuska, J.T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Ernst, B. Sprungk, Stochastic collocation for elliptic PDEs with random data: the lognormal case, in Sparse Grids and Applications - Munich 2012, ed. by J. Garcke, D. Pflüger (Springer International Publishing, Cham, 2014), pp. 29–53

    Chapter  Google Scholar 

  15. P. Frauenfelder, C. Schwab, R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194, 205–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Galvis, M. Sarkis, Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47, 3624–3651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Galvis, M. Sarkis, Regularity results for the ordinary product stochastic pressure equation. SIAM J. Math. Anal. 44, 2637–2665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Graham, F. Kuo, J. Nichols, R. Scheichl, C. Schwab, I. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, I.H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. I.G. Graham, R. Scheichl, E. Ullmann, Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods. Stoch. PDE: Anal. Comp. 4, 41–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. V.H. Hoang, C. Schwab, N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24, 797–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Holden, B. Øksendal, J. Uboe, T. Zhang, Stochastic Partial Differential Equations (Birkhäuser, Boston, MA, 1996)

    Book  MATH  Google Scholar 

  23. T.Y. Hou, W. Luo, B. Rozovskii, H.-M. Zhou, Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216, 687–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y.-Z. Hu, J.-A. Yan, Wick calculus for nonlinear Gaussian functionals. Acta Math. Appl. Sin. Engl. Ser. 25, 399–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.P. Huang, S.T. Quek, K.K. Phoon, Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes. Int. J. Numer. Methods Eng. 52, 1029–1043 (2001)

    Article  MATH  Google Scholar 

  26. F.Y. Kuo, C. Schwab, I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. F.Y. Kuo, C. Schwab, I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15, 411–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. C.Y. Lee, B. Rozovskii, A stochastic finite element method for stochastic parabolic equations driven by purely spatial noise. Commun. Stoch. Anal. 4 (2010), 271–297

    MathSciNet  MATH  Google Scholar 

  29. S. Lototsky, R. Mikulevicius, B.L. Rozovskii, Nonlinear filtering revisited: a spectral approach. SIAM J. Control Optim. 35, 435–461 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. S.V. Lototsky, B.L. Rozovskii, Stochastic partial differential equations driven by purely spatial noise. SIAM J. Math. Anal. 41, 1295–1322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.V. Lototsky, B.L. Rozovskii, X. Wan, Elliptic equations of higher stochastic order. M2AN Math. Model. Numer. Anal. 44, 1135–1153 (2010)

    Google Scholar 

  32. H. Manouzi, A finite element approximation of linear stochastic PDEs driven by multiplicative white noise. Int. J. Comput. Math. 85, 527–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Manouzi, M. Seaid, Solving Wick-stochastic water waves using a Galerkin finite element method. Math. Comput. Simul. 79, 3523–3533 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Manouzi, T.G. Theting, Mixed finite element approximation for the stochastic pressure equation of Wick type. IMA J. Numer. Anal. 24, 605–634 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Manouzi, T.G. Theting, Numerical analysis of the stochastic Stokes equations of Wick type. Numer. Methods Partial Differ. Equ. 23, 73–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Mikulevicius, B. Rozovskii, Linear parabolic stochastic PDEs and Wiener chaos. SIAM J. Math. Anal. 29, 452–480 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Mikulevicius, B. Rozovskii, On unbiased stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 54, 787–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Mikulevicius, B.L. Rozovskii, Fourier–Hermite expansions for nonlinear filtering. Theory Probab. Appl. 44, 606–612 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Mikulevicius, B.L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35, 1250–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Mikulevicius, B.L. Rozovskii, On distribution free Skorokhod–Malliavin calculus. Stoch. PDE: Anal. Comp. 4, 319–360 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Nualart, B. Rozovskii, Weighted stochastic Sobolev spaces and bilinear SPDEs driven by space-time white noise. J. Funct. Anal. 149, 200–225 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Teckentrup, R. Scheichl, M. Giles, E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125, 569–600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. T.G. Theting, Solving Wick-stochastic boundary value problems using a finite element method. Stoch. Stoch. Rep. 70, 241–270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  45. D. Venturi, X. Wan, R. Mikulevicius, B.L. Rozovskii, G.E. Karniadakis, Wick-Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations. Proc. R. Soc. Edinb. Sect. A. 469 (2013)

    Google Scholar 

  46. X. Wan, A note on stochastic elliptic models. Comput. Methods Appl. Mech. Eng. 199, 2987–2995 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. X. Wan, A discussion on two stochastic elliptic modeling strategies. Commun. Comput. Phys. 11, 775–796 (2012)

    Article  MathSciNet  Google Scholar 

  48. X. Wan, B. Rozovskii, G.E. Karniadakis, A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. Proc. Natl. Acad. Sci. U.S.A. 106, 14189–14194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Wan, B.L. Rozovskii, The Wick–Malliavin approximation of elliptic problems with log-normal random coefficients. SIAM J. Sci. Comput. 35, A2370–A2392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Zheng, B. Rozovsky, G.E. Karniadakis, Adaptive Wick-Malliavin approximation to nonlinear SPDEs with discrete random variables. SIAM J. Sci. Comput. 37, A1872–A1890 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, Z., Karniadakis, G.E. (2017). Multiplicative white noise: The Wick-Malliavin approximation. In: Numerical Methods for Stochastic Partial Differential Equations with White Noise. Applied Mathematical Sciences, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-57511-7_11

Download citation

Publish with us

Policies and ethics