Skip to main content

PNE: Label Embedding Enhanced Network Embedding

  • Conference paper
  • First Online:
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10234))

Included in the following conference series:

Abstract

Unsupervised NRL (Network Representation Learning) methods only consider the network structure information, which makes their learned node representations less discriminative. To utilize the label information of the partially labeled network, several semi-supervised NRL methods are proposed. The key idea of these methods is to merge the representation learning step and the classifier training step together. However, it is not flexible enough and their parameters are often hard to tune. In this paper, we provide a new point of view for semi-supervised NRL and present a novel model named Predictive Network Embedding (PNE). Briefly, we embed nodes and labels into the same latent space instead of training a classifier in the representation learning process. Thus the discriminability of node representations is enhanced by incorporating the label information. We conduct node classification task on four real world datasets. The experimental results demonstrate that our model significantly outperforms the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS 14, 585–591 (2001)

    Google Scholar 

  2. Bourigault, S., Lagnier, C., Lamprier, S., Denoyer, L., Gallinari, P.: Learning social network embeddings for predicting information diffusion. In: WSDM, pp. 393–402. ACM (2014)

    Google Scholar 

  3. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: CIKM, pp. 891–900. ACM (2015)

    Google Scholar 

  4. Chen, M., Yang, Q., Tang, X.: Directed graph embedding. In: IJCAI, pp. 2707–2712 (2007)

    Google Scholar 

  5. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  6. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864. ACM, New York (2016)

    Google Scholar 

  7. Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for classifying in heterogeneous social networks. In: WSDM, pp. 373–382. ACM (2014)

    Google Scholar 

  8. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 570–586. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15880-3_42

    Chapter  Google Scholar 

  9. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lim, K.W., Buntine, W.L.: Bibliographic analysis with the citation network topic model. In: ACML (2014)

    Google Scholar 

  11. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retr. 3(2), 127–163 (2000)

    Article  Google Scholar 

  12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  13. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI-2016, pp. 1895–1901 (2016)

    Google Scholar 

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD, pp. 701–710. ACM, New York (2014)

    Google Scholar 

  15. Perozzi, B., Kulkarni, V., Skiena, S.: Walklets: multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:1605.02115 (2016)

  16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  17. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Google Scholar 

  18. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: SIGKDD, pp. 1165–1174. ACM, New York (2015)

    Google Scholar 

  19. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067–1077. ACM, New York (2015)

    Google Scholar 

  20. Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin DeepWalk: discriminative learning of network representation. In: IJCAI, pp. 3889–3895 (2016)

    Google Scholar 

  21. Walker, A.J.: New fast method for generating discrete random numbers with arbitrary frequency distributions. Electron. Lett. 8(10), 127–128 (1974)

    Article  Google Scholar 

  22. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117. AAAI Press (2015)

    Google Scholar 

  23. Yang, Y., Chawla, N., Sun, Y., Hani, J.: Predicting links in multi-relational and heterogeneous networks. In: ICDM, pp. 755–764. IEEE (2012)

    Google Scholar 

  24. Yang, Z., Cohen, W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861 (2016)

Download references

Acknowledgments

This work is supported by 973 Program with Grant No. 2014CB340400. Yan Zhang is supported by NSFC with Grant No. 61532001 and No. 61370054, and MOE-RCOE with Grant No. 2016ZD201. And we also thank the three anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, W., Mao, X., Li, X., Zhang, Y., Li, X. (2017). PNE: Label Embedding Enhanced Network Embedding. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10234. Springer, Cham. https://doi.org/10.1007/978-3-319-57454-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57454-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57453-0

  • Online ISBN: 978-3-319-57454-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics