Advertisement

Beyond Assortativity: Proclivity Index for Attributed Networks (ProNe)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10234)

Abstract

If Alice is majoring in Computer Science, can we guess the major of her friend Bob? Even harder, can we determine Bob’s age or sexual orientation? Attributed graphs are ubiquitous, occurring in a wide variety of domains; yet there is limited literature on the study of the interplay between the attributes associated to nodes and edges connecting them. Our work bridges this gap by addressing the following questions: Given the network structure, (i) which attributes and (ii) which pairs of attributes show correlation? Prior work has focused on the first part, under the name of assortativity (closely related to homophily). In this paper, we propose ProNe, the first measure to handle pairs of attributes (e.g., major and age). The proposed ProNe is (a) thorough, handling both homophily and heterophily (b) general, quantifying correlation of a single attribute or a pair of attributes (c) consistent, yielding a zero score in the absence of any structural correlation. Furthermore, ProNe can be computed fast in time linear in the network size and is highly useful, with applications in data imputation, marketing, personalization and privacy protection.

Keywords

Attributed networks Homophily Heterophily Assortativity 

References

  1. 1.
    Akcora, C.G., Carminati, B., Ferrari, E.: User similarities on social networks. Soc. Netw. Anal. Min. 1–21 (2013)Google Scholar
  2. 2.
    Akoglu, L., Faloutsos, C.: RTG: a recursive realistic graph generator using random typing. Data Min. Knowl. Disc. 19(2), 194–209 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bianconi, G.: Interdisciplinary and physics challenges of network theory. EPL (Europhys. Lett.) 111(5), 56001 (2015)CrossRefGoogle Scholar
  5. 5.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bothorel, C., Cruz, J.D., Magnani, M., Micenkova, B.: Clustering attributed graphs: models, measures and methods. Netw. Sci. 3(03), 408–444 (2015)CrossRefGoogle Scholar
  7. 7.
    Choudhury, M.D., Counts, S., Horvitz, E., Hoff, A.: Characterizing and predicting postpartum depression from shared Facebook data. In: CSCW (2014)Google Scholar
  8. 8.
    Colombo, G., Burnap, P., Hodorog, A., Scourfield, J.: Analysing the connectivity and communication of suicidal users on Twitter. Comput. Commun. 73, 291–300 (2016)CrossRefGoogle Scholar
  9. 9.
    Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in online communities. In: Proceedings of 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 160–168 (2008)Google Scholar
  10. 10.
    Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E.R., Song, D.: Joint link prediction and attribute inference using a social-attribute network. ACM Trans. Intell. Syst. Technol. (TIST) 5(2), 27 (2014)Google Scholar
  11. 11.
    Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Song, D., et al.: Jointly predicting links and inferring attributes using a social-attribute network (SAN) (2011). arXiv preprint arXiv:1112.3265
  12. 12.
    Gong, N.Z., Xu, W., Huang, L., Mittal, P., Stefanov, E., Sekar, V., Song, D.: Evolution of social-attribute networks: measurements, modeling, and implications using Google+. In: Proceedings of 2012 ACM Conference on Internet Measurement Conference, pp. 131–144 (2012)Google Scholar
  13. 13.
    Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 62–73. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-18009-5_7 CrossRefGoogle Scholar
  14. 14.
    La Fond, T., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of 19th International Conference on World Wide Web, pp. 601–610. ACM (2010)Google Scholar
  15. 15.
    Lewis, K., Gonzalez, M., Kaufman, J.: Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. 109(1), 68–72 (2012)CrossRefGoogle Scholar
  16. 16.
    Newman, M.: Networks: An Introduction. Oxford University Press, Inc., Oxford (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pelechrinis, K., Wei, D.: VA-index: quantifying assortativity patterns in networks with multidimensional nodal attributes. PLoS ONE 11(1), e0146188 (2016)CrossRefGoogle Scholar
  19. 19.
    Pfeiffer III, J.J., Moreno, S., La Fond, T., Neville, J., Gallagher, B.: Attributed graph models: modeling network structure with correlated attributes. In: Proceedings of 23rd International Conference on World Wide Web, pp. 831–842. ACM (2014)Google Scholar
  20. 20.
    Rabbany, R., Zaïane, O.: Generalization of clustering agreements and distances for overlapping clusters and network communities. Data Min. Knowl. Disc. 29(5), 1458–1485 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Silva, A., Meira, W., Zaki, M.J.: Mining attribute-structure correlated patterns in large attributed graphs. Proc. VLDB Endow. 5(5), 466–477 (2012)CrossRefGoogle Scholar
  22. 22.
    Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. Physica A 391(16), 4165–4180 (2012)CrossRefGoogle Scholar
  23. 23.
    Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)Google Scholar
  24. 24.
    Yin, Z., Gupta, M., Weninger, T., Han, J.: LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: Proceedings of 19th International Conference on World Wide Web, pp. 1211–1212. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations