Skip to main content

Beyond Assortativity: Proclivity Index for Attributed Networks (ProNe)

  • Conference paper
  • First Online:
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10234))

Included in the following conference series:

Abstract

If Alice is majoring in Computer Science, can we guess the major of her friend Bob? Even harder, can we determine Bob’s age or sexual orientation? Attributed graphs are ubiquitous, occurring in a wide variety of domains; yet there is limited literature on the study of the interplay between the attributes associated to nodes and edges connecting them. Our work bridges this gap by addressing the following questions: Given the network structure, (i) which attributes and (ii) which pairs of attributes show correlation? Prior work has focused on the first part, under the name of assortativity (closely related to homophily). In this paper, we propose ProNe, the first measure to handle pairs of attributes (e.g., major and age). The proposed ProNe is (a) thorough, handling both homophily and heterophily (b) general, quantifying correlation of a single attribute or a pair of attributes (c) consistent, yielding a zero score in the absence of any structural correlation. Furthermore, ProNe can be computed fast in time linear in the network size and is highly useful, with applications in data imputation, marketing, personalization and privacy protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    f is superadditive \( \iff f(x+y) \ge f(x)+f(y)\).

References

  1. Akcora, C.G., Carminati, B., Ferrari, E.: User similarities on social networks. Soc. Netw. Anal. Min. 1–21 (2013)

    Google Scholar 

  2. Akoglu, L., Faloutsos, C.: RTG: a recursive realistic graph generator using random typing. Data Min. Knowl. Disc. 19(2), 194–209 (2009)

    Article  MathSciNet  Google Scholar 

  3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianconi, G.: Interdisciplinary and physics challenges of network theory. EPL (Europhys. Lett.) 111(5), 56001 (2015)

    Article  Google Scholar 

  5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bothorel, C., Cruz, J.D., Magnani, M., Micenkova, B.: Clustering attributed graphs: models, measures and methods. Netw. Sci. 3(03), 408–444 (2015)

    Article  Google Scholar 

  7. Choudhury, M.D., Counts, S., Horvitz, E., Hoff, A.: Characterizing and predicting postpartum depression from shared Facebook data. In: CSCW (2014)

    Google Scholar 

  8. Colombo, G., Burnap, P., Hodorog, A., Scourfield, J.: Analysing the connectivity and communication of suicidal users on Twitter. Comput. Commun. 73, 291–300 (2016)

    Article  Google Scholar 

  9. Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in online communities. In: Proceedings of 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 160–168 (2008)

    Google Scholar 

  10. Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E.R., Song, D.: Joint link prediction and attribute inference using a social-attribute network. ACM Trans. Intell. Syst. Technol. (TIST) 5(2), 27 (2014)

    Google Scholar 

  11. Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Song, D., et al.: Jointly predicting links and inferring attributes using a social-attribute network (SAN) (2011). arXiv preprint arXiv:1112.3265

  12. Gong, N.Z., Xu, W., Huang, L., Mittal, P., Stefanov, E., Sekar, V., Song, D.: Evolution of social-attribute networks: measurements, modeling, and implications using Google+. In: Proceedings of 2012 ACM Conference on Internet Measurement Conference, pp. 131–144 (2012)

    Google Scholar 

  13. Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 62–73. Springer, Heidelberg (2010). doi:10.1007/978-3-642-18009-5_7

    Chapter  Google Scholar 

  14. La Fond, T., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of 19th International Conference on World Wide Web, pp. 601–610. ACM (2010)

    Google Scholar 

  15. Lewis, K., Gonzalez, M., Kaufman, J.: Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. 109(1), 68–72 (2012)

    Article  Google Scholar 

  16. Newman, M.: Networks: An Introduction. Oxford University Press, Inc., Oxford (2010)

    Book  MATH  Google Scholar 

  17. Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  MathSciNet  Google Scholar 

  18. Pelechrinis, K., Wei, D.: VA-index: quantifying assortativity patterns in networks with multidimensional nodal attributes. PLoS ONE 11(1), e0146188 (2016)

    Article  Google Scholar 

  19. Pfeiffer III, J.J., Moreno, S., La Fond, T., Neville, J., Gallagher, B.: Attributed graph models: modeling network structure with correlated attributes. In: Proceedings of 23rd International Conference on World Wide Web, pp. 831–842. ACM (2014)

    Google Scholar 

  20. Rabbany, R., Zaïane, O.: Generalization of clustering agreements and distances for overlapping clusters and network communities. Data Min. Knowl. Disc. 29(5), 1458–1485 (2015)

    Article  MathSciNet  Google Scholar 

  21. Silva, A., Meira, W., Zaki, M.J.: Mining attribute-structure correlated patterns in large attributed graphs. Proc. VLDB Endow. 5(5), 466–477 (2012)

    Article  Google Scholar 

  22. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. Physica A 391(16), 4165–4180 (2012)

    Article  Google Scholar 

  23. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)

    Google Scholar 

  24. Yin, Z., Gupta, M., Weninger, T., Han, J.: LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: Proceedings of 19th International Conference on World Wide Web, pp. 1211–1212. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reihaneh Rabbany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rabbany, R., Eswaran, D., Dubrawski, A.W., Faloutsos, C. (2017). Beyond Assortativity: Proclivity Index for Attributed Networks (ProNe). In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10234. Springer, Cham. https://doi.org/10.1007/978-3-319-57454-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57454-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57453-0

  • Online ISBN: 978-3-319-57454-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics