Advertisement

Critical Care: Pulmonary

  • Nicole L. Werner
  • Lena M. Napolitano
Chapter

Abstract

Pulmonary complications [atelectasis, pneumonia, pulmonary edema, COPD exacerbation, acute respiratory failure, acute respiratory distress syndrome (ARDS)] are common in geriatric trauma and acute care surgery patients. Pneumonia and acute respiratory failure are most common. Acute respiratory failure and ARDS are life-threatening pulmonary complications that require mechanical ventilation and intensive care unit admission, and are associated with increased risk for ventilator-associated pneumonia. This chapter reviews epidemiology, risk factors, diagnosis, treatment, and prevention of pulmonary complications in geriatric patients.

Keywords

Pulmonary Pneumonia Respiratory failure Ventilator-associated pneumonia Ventilator-associated events Acute respiratory distress syndrome Mechanical ventilation Outcomes 

References

  1. 1.
    Ramly E, Kaafarani HM, Velmahos GC. The effect of aging on pulmonary function: implications for monitoring and support of the surgical and trauma patient. Surg Clin North Am. 2015;95(1):53–69.CrossRefPubMedGoogle Scholar
  2. 2.
    Chun KY, Annabelle T, David YL, et al. Pulmonary complications after major abdominal surgery: National Surgical Quality Improvement Program analysis. J Surg Res. 2015;198:441–9.CrossRefGoogle Scholar
  3. 3.
    Memtsoudis S, Liu SS, Ma Y, Chiu YL, Walz JM, Gaber-Baylis LK, Mazumdar M. Perioperative pulmonary outcomes in patients with sleep apnea after noncardiac surgery. Anesth Analg. 2011;112(1):113–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Arozullah AM, Daley J, Henderson WG, et al. Multifactorial risk index for predicting postoperative respiratory failure in men after major non cardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg. 2000;232:242.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Canet J, Gallart L, Gomar C, et al. Prediction of postoperative pulmonary complications in a population based cohort. Anesthesiology. 2010;113:1338.CrossRefPubMedGoogle Scholar
  6. 6.
    Gupta H, Gupta PK, Fang X, et al. Development and validation of a risk calculator predicting respiratory failure. Chest. 2011;140:1207.CrossRefPubMedGoogle Scholar
  7. 7.
    Gupta H, Gupta PK, Schuller D, et al. Development and validation of a risk calculator for predicting postoperative pneumonia. Mayo Clin Proc. 2013;88:1241.CrossRefPubMedGoogle Scholar
  8. 8.
    Lawrence VA, Cornell JE, Smetana GW, American College of Physicians. Strategies to reduce postoperative pulmonary complications after noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med. 2006;144(8):596–608. ReviewCrossRefPubMedGoogle Scholar
  9. 9.
    Qaseem A, Snow V, Fitterman N, Hornbake ER, Lawrence VA, Smetana GW, Weiss K, Owens DK, Aronson M, Barry P, Casey DE Jr, Cross JT Jr, Fitterman N, Sherif KD, Weiss KB. Clinical efficacy assessment Subcommittee of the American College of Physicians. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. Ann Intern Med. 2006;144(8):575–80.CrossRefPubMedGoogle Scholar
  10. 10.
    do Nascimento Junior P, Módolo NS, Andrade S, et al. Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database Syst Rev. 2014;2:CD006058.Google Scholar
  11. 11.
    Zarbock A, Mueller E, Netzer S, et al. Prophylactic nasal continuous positive airway pressure following cardiac surgery protects from postoperative pulmonary complications: a prospective, randomized, controlled trial in 500 patients. Chest. 2009;135:1252.CrossRefPubMedGoogle Scholar
  12. 12.
    Nelson R, Edwards S, Tse B. Prophylactic nasogastric decompression after abdominal surgery. Cochrane Database Syst Rev. 2007;3:CD004929.Google Scholar
  13. 13.
    Arozullah AM, Khuri SF, Henderson WG, et al. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135(10):847–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Napolitano LM. Use of severity scoring and stratification factors in clinical trials of hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis. 2010;51(Suppl 1):S67–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Ozhathil DK, Li Y, Smith JK, Witkowski E, Coyne ER, Alavi K, Tseng JF, Shah SA. Colectomy Performance improvement within NSQIP 2005-2008. J Surg Res. 2011;171(1):e9–e13.CrossRefPubMedGoogle Scholar
  16. 16.
    American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416.CrossRefGoogle Scholar
  17. 17.
    Fàbregas N, Ewig S, Torres A, et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax. 1999;54:867.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Meduri GU. Diagnosis and differential diagnosis of ventilator-associated pneumonia. Clin Chest Med. 1995;16:61.PubMedGoogle Scholar
  19. 19.
    Wunderink RG, Woldenberg LS, Zeiss J, et al. The radiologic diagnosis of autopsy-proven ventilator-associated pneumonia. Chest. 1992;101:458.CrossRefPubMedGoogle Scholar
  20. 20.
  21. 21.
    Leonard KL, Borst GM, Davies SW, et al. Ventilator-associated pneumonia in trauma patients: different criteria, different rates. Surg Infect. 2016;17(3):363–8.CrossRefGoogle Scholar
  22. 22.
    Mangram AJ, Sohn J, Zhou N, et al. Trauma-associated pneumonia: time to redefine ventilator-associated pneumonia in trauma patients. Am J Surg. 2015;210(6):1056–61. discussion 1061-2CrossRefPubMedGoogle Scholar
  23. 23.
    Kollef MH, Bock KR, Richards RD, Hearns ML. The safety and diagnostic accuracy of minibronchoalveolar lavage in patients with suspected ventilator-associated pneumonia. Ann Intern Med. 1995;122:743.CrossRefPubMedGoogle Scholar
  24. 24.
    Shorr AF, Sherner JH, Jackson WL, Kollef MH. Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit Care Med. 2005;33:46.CrossRefPubMedGoogle Scholar
  25. 25.
    Klompas M. Does this patient have ventilator-associated pneumonia? JAMA. 2007;297(14):1583–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Luyt CE, Combes A, Reynaud C, et al. Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensive Care Med. 2008;34(8):1434–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Ramirez P, Garcia MA, Ferrer M, et al. Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur Respir J. 2008;31(2):356–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Linssen CF, Bekers O, Drent M, Jacobs JA. C-reactive protein and procalcitonin concentrations in BAL fluid as a predicctor of ventilator-associated pneumonia. Ann Clin Biochem. 2008;45:293–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Gibot S, Cravoisy A, Levy B, et al. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350(5):451–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Determann RM, Millo JL, Gibot S, et al. Serial changes in soluble triggering receptor expressed on myeloid cells in the lung during development of ventilator-associated-pneumonia. Intensive Care Med. 2005;31(11):1495–500.CrossRefPubMedGoogle Scholar
  31. 31.
    Anand NJ, Zuick S, Klesney-Tait J, Kollef MH. Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in BAL fluid of patients with pulmonary infiltrates in the ICU. Chest. 2009;135(3):641–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Oudhuis GJ, Beuving J, Bergmans D, et al. Soluble triggering receptor expressed on myeloid cells-1 in bronchoalveolar lavage fluid is not predictive for ventilator-associated pneumonia. Intensive Care Med. 2009;35(7):1265–70.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
  34. 34.
    Meduri GU, Johanson WG Jr. International consensus conference: clinical investigation of ventilator-associated pneumonia. Chest. 1992;102:551S.CrossRefPubMedGoogle Scholar
  35. 35.
    Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention 2006–2007. Infect Control Hosp Epidemiol. 2008;29:996–1011.CrossRefPubMedGoogle Scholar
  36. 36.
    Iregui M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262.CrossRefPubMedGoogle Scholar
  37. 37.
    Habarth S, Garbino J, Pugin, et al. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med. 2003;115(7):529–35.CrossRefGoogle Scholar
  38. 38.
    Luna CM, Vujacich P, Niederman MS, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111:676.CrossRefPubMedGoogle Scholar
  39. 39.
    Kollef MH, Sherman G, Ward S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115(2):462–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Teixeira PJ, Seligman R, Hertz FT, et al. Inadequate treatment of ventilator-associated pneumonia: risk factors and impact on outcomes. J Hosp Infect. 2007;65(4):361–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588.CrossRefPubMedGoogle Scholar
  42. 42.
    Wren SM, Martin M, Yoon JK, Bech F. Postoperative pneumonia-prevention program for the inpatient surgical ward. J Am Coll Surg. 2010;210:491–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Napolitano LM. Perspectives in surgical infections: what does the future hold? Surg Infect. 2010;11(2):111–23. ReviewCrossRefGoogle Scholar
  44. 44.
    Muscedere J, Dodek P, Keenan S, Fowler R, Cook D, Heyland D. VAP guidelines committee and the Canadian critical care trials group. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: prevention. J Crit Care. 2008;23(1):126–37.CrossRefPubMedGoogle Scholar
  45. 45.
    Wip C, Napolitano L. Bundles to prevent ventilator-associated pneumonia: how valuable are they? Curr Opin Infect Dis. 2009;22(2):159–66.CrossRefPubMedGoogle Scholar
  46. 46.
    Speck K, Rawat N, Weiner NC, Tujuba HG, Farley D, Berenholtz S. A systematic approach for developing a ventilator-associated pneumonia prevention bundle. Am J Infect Control. 2016;44(6):652–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cabrini L, Landoni G, Oriani A, Plumari VP, Nobile L, Greco M, Pasin L, Beretta L, Zangrillo A. Noninvasive ventilation and survival in acute care settings: a comprehensive systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015;43(4):880–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Bajaj A, Rathor P, Sehgal V, Shetty A. Efficacy of noninvasive ventilation after planned extubation: a systematic review and meta-analysis of randomized controlled trials. Heart Lung. 2015;44(2):150–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Vital FM, Ladeira MT, Atallah AN. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2013;5:CD005351.Google Scholar
  50. 50.
    Faria DA, da Silva EM, Atallah ÁN, Vital FM. Noninvasive positive pressure ventilation for acute respiratory failure following upper abdominal surgery. Cochrane Database Syst Rev. 2015;10:CD009134.Google Scholar
  51. 51.
    Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive positive-pressure ventilation as a weaning strategy for intubated adults with respiratory failure. Cochrane Database Syst Rev. 2013;12:CD004127.Google Scholar
  52. 52.
    Garrard CS, A'Court CD. The diagnosis of pneumonia in the critically ill. Chest. 1995;108(2 Suppl):17S–25S.CrossRefPubMedGoogle Scholar
  53. 53.
    Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Klompas M, Anderson D, Trick W, et al. The preventability of ventilator-associated events. The CDC prevention epicenters wake up and breathe collaborative. Am J Respir Crit Care Med. 2015;191(3):292–301.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Drakulovic MB, Torres A, Bauer TT, et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Ann Intern Med. 1999;354:1851.Google Scholar
  56. 56.
    van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, Joore HC, van Schijndel RJ, van der Tweel I, Ramsay G, Bonten MJ. Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med. 2006;34(2):396–402.CrossRefPubMedGoogle Scholar
  57. 57.
    Alexiou VG, Ierodiakonou V, Dimopoulos G, Falagas ME. Impact of patient position on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. J Crit Care. 2009;24(4):515–22.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang L, Li X, Yang Z, Tang X, Yuan Q, Deng L, Sun X. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev. 2016;1:CD009946.Google Scholar
  59. 59.
    Wang F, Bo L, Tang L, Lou J, Wu Y, Chen F, Li J, Deng X. Subglottic secretion drainage for preventing ventilator-associated pneumonia: an updated meta-analysis of randomized controlled trials. J Trauma Acute Care Surg. 2012;72(5):1276–85.  https://doi.org/10.1097/TA.0b013e318247cd33.CrossRefPubMedGoogle Scholar
  60. 60.
    Kollef MH, Afessa B, Anzueto A, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 2008;300(7):805–13.CrossRefPubMedGoogle Scholar
  61. 61.
    Tokmaji G, Vermeulen H, Müller MC, Kwakman PH, Schultz MJ, Zaat SA. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients. Cochrane Database Syst Rev. 2015;8:CD009201.Google Scholar
  62. 62.
    DeRiso AJ, Ladowski JS, Dillon TA, et al. Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest. 1996;109:1556.CrossRefPubMedGoogle Scholar
  63. 63.
    Shi Z, Xie H, Wang P, et al. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst Rev. 2013;13(8):CD008367.Google Scholar
  64. 64.
    de Smet AM, Kluytmans JA, Cooper BS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360:20.CrossRefPubMedGoogle Scholar
  65. 65.
    D’Amico R, Pifferi S, Leonetti C, et al. Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomised controlled trials. BMJ. 1998;316:1275.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Silvestri L, van Saene HK, Casarin A, et al. Impact of selective decontamination of the digestive tract on carriage and infection due to gram-negative and gram-positive bacteria: a systematic review of randomised controlled trials. Anaesth Intensive Care. 2008;36:324.PubMedGoogle Scholar
  67. 67.
    Wunderink RG. Welkommen to our world. Emergence of antibiotic resistance with selective decontamination of the digestive tract. Am J Respir Crit Care Med. 2010;181:426.CrossRefPubMedGoogle Scholar
  68. 68.
    Siempos II, Ntaidou TK, Filippidis FT, Choi AM. Effect of early versus late or no tracheostomy on mortality and pneumonia of critically ill patients receiving mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(2):150–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Hosokawa K, Nishimura M, Egi M, Vincent JL. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care. 2015;19:424.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Piroddi IM, Barlascini C, Esquinas A, Braido F, Banfi P, Nicolini A. Non-invasive mechanical ventilation in elderly patients: a narrative review. Geriatr Gerontol Int. 2017;17(5):689–96.  https://doi.org/10.1111/ggi.12810.CrossRefPubMedGoogle Scholar
  71. 71.
    Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.CrossRefPubMedGoogle Scholar
  72. 72.
    Damuth E, Mitchell JA, Bartock JL, et al. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(7):544–53.CrossRefPubMedGoogle Scholar
  73. 73.
    Ely EW, Evans GW, Haponik EF. Mechanical ventilation in a cohort of elderly patients admitted to an intensive care unit. Ann Intern Med. 1999;131(2):96–104.CrossRefPubMedGoogle Scholar
  74. 74.
    Lai CC, Ko SC, Chen CM, Weng SF, Tseng KL, Cheng KC. The outcomes and prognostic factors of the very elderly requiring prolonged mechanical ventilation in a single respiratory care center. Medicine (Baltimore). 2016;95(2):e2479.CrossRefGoogle Scholar
  75. 75.
    Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2015;1:CD008807.PubMedGoogle Scholar
  76. 76.
    Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children. Cochrane Database Syst Rev. 2014;6:CD009235.Google Scholar
  77. 77.
    McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367(23):2233–9.CrossRefPubMedGoogle Scholar
  78. 78.
    ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.Google Scholar
  79. 79.
    Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefPubMedGoogle Scholar
  80. 80.
    Pipeling MR, Fan E. Therapies for refractory hypoxemia in acute respiratory distress syndrome. JAMA. 2010;304(22):2521–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose. Crit Care. 2016;20(1):132.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bein T, Grasso S, Moerer O, et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42(5):699–711.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Acute Care Surgery (Trauma, Burns, Surgical Critical Care, Emergency Surgery), Department of SurgeryUniversity of MichiganAnn ArborUSA

Personalised recommendations