Geriatric Cervical Spinal Trauma: History, Presentation, and Treatment

  • Victor Ryan Lewis
  • Stephen Curran Kane
  • Ira Martin Garonzik
  • James Edmond Conway
Chapter

Abstract

As the generation of baby boomers in the United States ages, there is an increased need to address these individuals’ chronic degenerative changes as well as the acute traumatic injuries that these changes may cause [1]. Specifically, this population is more susceptible to low-energy trauma in the form of standing or seated falls that may cause trauma of the cervical spine [31, 32, 33, 34, 36]. This chapter specifically focuses on the predispositions of the elderly to cervical spinal trauma, mechanisms of trauma, posttraumatic structural and neurological compromise, as well as corresponding treatment and prognosis.

Keywords

Central cord syndrome Diffuse idiopathic skeletal hyperostosis Ossification of the posterior longitudinal ligament Geriatric Trauma Cervical spine Odontoid fracture 

Abbreviations

ACDF

Anterior cervical discectomy and fusion

AO

Arbeitsgemeinschaft für Osteosynthesefragen System

AP

Anterior-posterior

AS

Ankylosing spondylitis

ASIA

American Spinal Injury Association’s

CCS

Central cord syndrome

CT

Computerized tomography

DDD

Degenerative disc disease

DISH

Diffuse idiopathic skeletal hyperostosis

MVA

Motor vehicle accidents

OPLL

Ossification of the posterior longitudinal ligament

PCDF

Posterior cervical discectomy and fusion

SCI

Spinal cord injury

References

  1. 1.
    Taylor JA, Bussières A. Diagnostic imaging for spinal disorders in the elderly: a narrative review. Chiropr Man Therap. 2012;20:16.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Watanabe M, Sakai D, Yamamoto Y, Nagai T, Sato M, Mochida J. Analysis of predisposing factors in elderly people with Type II odontoid fracture. Spine J. 2014;14(6):861.CrossRefPubMedGoogle Scholar
  3. 3.
    Tanishima S, Takeda C, Hamamoto Y, Kondo Y, Nagashima H. Prompt surgical management for spinal fracture in the elderly aged over 90 years with diffuse idiopathic skeletal hyperostosis to extend their healthy lifespan. Eur J Orthop Surg Traumatol. 2012;22:29–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Savall F, Mokrane F-Z, Dedouit F, Capuani C, Guilbeau-Frugier C, Rougé D, et al. Spine injury following a low-energy trauma in ankylosing spondylitis: a study of two cases. Forensic Sci Int. 2014;241:123–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Fujimura Y, Nakamura M, Toyama Y. Influence of minor trauma on surgical results in patients with cervical OPLL. J Spinal Disord. 1998;11:16–20.CrossRefPubMedGoogle Scholar
  6. 6.
    EFFO, NFO. Who are candidates for prevention and treatment for osteoporosis? Osteoporosis Int. 1997;7:1–6.Google Scholar
  7. 7.
    Lerner U. Bone remodeling in post-menopausal osteoporosis. J Dent Res. 2006;85:584–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Cherniack EP, Levis S, Troen BR, Hypovitaminosis D. A widespread epidemic. Geriatrics. 2008;63:24–30.PubMedGoogle Scholar
  9. 9.
    Alexander L, Beur SMJD. Lifestyle modifications may help avoid need for pharmacological management of osteoporosis. MD Conf Exp. 2011;11:26–8.CrossRefGoogle Scholar
  10. 10.
    Schwarz C, Sulzbacher I, Oberbauer R. Review: diagnosis of renal osteodystrophy. Eur J Clin Investig. 2006;36:13–22.CrossRefGoogle Scholar
  11. 11.
    Kelsey JL. Risk factors for osteoporosis and associated fractures. Public Health Rep. 1989;104:14–20.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Drake MT, Murad MH, Mauck KF, Lane MA, Undavalli C, Elraiyah T, et al. Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. J Clin Endocrinol Metabol. 2012;97:1861–70.CrossRefGoogle Scholar
  13. 13.
    Einhorn TA. Bone strength: the bottom line. Calcif Tissue Int. 1992;51:333–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Todd AG. Cervical spine: degenerative conditions. Curr Rev Musculoskelet Med. 2011;4:168–74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Urban JPG, Mcmullin JF. Swelling pressure of the lumbar intervertebral discs. Spine. 1988;13:179–87.CrossRefPubMedGoogle Scholar
  17. 17.
    Urban JPG, Holm SH. Intervertebral disc nutrition as related to spinal movements and fusion. Tis Nutr Viabil. 1986:101–19.Google Scholar
  18. 18.
    Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res. 2001;19:977–84.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhong G, Buser Z, Lao L, Yin R, Wang JC. Kinematic relationship between missed ligamentum flavum bulge and degenerative factors in the cervical spine. Spine J. 2015;15:2216–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Weinfeld RM, Olson PN, Maki DD, Griffiths HJ. The prevalence of diffuse idiopathic skeletal hyperostosis (DISH) in two large American Midwest metropolitan hospital populations. Skelet Radiol. 1997;26:222–5.CrossRefGoogle Scholar
  21. 21.
    Baxi V, Gaiwal S. Diffuse idiopathic skeletal hyperostosis of cervical spine—an unusual cause of difficult flexible fiber optic intubation. Saudi J Anaesth. 2010;4:17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Belanger TA, Rowe DE. Diffuse idiopathic skeletal hyperostosis: musculoskeletal manifestations. J Am Acad Orthop Surg. 2001;9:258–67.CrossRefPubMedGoogle Scholar
  23. 23.
    Khan AQ, Gupta K, Jameel J, Sherwani M. Diffuse idiopathic skeletal hyperostosis. J Clin Orthop Trauma. 2010;1:47–8.CrossRefGoogle Scholar
  24. 24.
    Hir PXL, Sautet A, Gars LL, Zeitoun F, Tubiana JM, Arrivé L, et al. Hyperextension vertebral body fractures in diffuse idiopathic skeletal hyperostosis: a cause of intravertebral fluidlike collections on MR imaging. Am J Roentgenol. 1999;173:1679–83.CrossRefGoogle Scholar
  25. 25.
    Kalb S, Martirosyan NL, Perez-Orribo L, Kalani MYS, Theodore N. Analysis of demographics, risk factors, clinical presentation, and surgical treatment modalities for the ossified posterior longitudinal ligament. Neurosurg Focus. 2011;30:E11.  https://doi.org/10.3171/2010.12.focus10265.CrossRefPubMedGoogle Scholar
  26. 26.
    McAfee PC, Regan JJ, Bohlman HH. Cervical cord compression from ossification of the posterior longitudinal ligament in non-orientals. J Bone Joint Surg Br. 1987;69:569–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Smith ZA, Buchanan CC, Raphael D, Khoo LT. Ossification of the posterior longitudinal ligament: pathogenesis, management, and current surgical approaches. Neurosurg Focus. 2011;30:E10.  https://doi.org/10.3171/2011.1.focus10256.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim T-J, Bae K-W, Uhm W-S, Kim T-H, Joo K-B, Jun J-B. Prevalence of ossification of the posterior longitudinal ligament of the cervical spine. Joint Bone Spine. 2008;75(4):471.CrossRefPubMedGoogle Scholar
  29. 29.
    Sarkiss CA, Fogg GA, Skovrlj B, Cho SK, Caridi JM. To operate or not? A literature review of surgical outcomes in 95 patients with Parkinson’s disease undergoing spine surgery. Clin Neurol Neurosurg. 2015;134:122–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Fasano A, Plotnik M, Bove F, Berardelli A. The neurobiology of falls. Neurol Sci. 2012;33:1215–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Bub LD, Blackmore CC, Mann FA, Lomoschitz FM. Cervical spine fractures in patients 65 years and older: a clinical prediction rule for blunt trauma. Radiology. 2005;234:143–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Fredø H, Bakken I, Lied B, Rønning P, Helseth E. Epidemiology of traumatic cervical spine fractures in the Norwegian population. Global Spine J. 2015.  https://doi.org/10.1055/s-0035-1554113.
  33. 33.
    Jabbour P, Fehlings M, Vaccaro AR, Harrop JS. Traumatic spine injuries in the geriatric population. Neurosurg Focus. 2008;25:E16.  https://doi.org/10.3171/foc.2008.25.11.e16.CrossRefPubMedGoogle Scholar
  34. 34.
    Regenbogen V, Rogers L, Atlas S, Kim K. Cervical spinal cord injuries in patients with cervical spondylosis. Am J Roentgenol. 1986;146:277–84.CrossRefGoogle Scholar
  35. 35.
    Torretti JA, Sengupta DK. Cervical spine trauma. Indian J Orthop. 2007;41:255–67.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lomoschitz FM, Blackmore CC, Mirza SK, Mann FA. Cervical spine injuries in patients 65 years old and older. Am J Roentgenol. 2002;178:573–7.CrossRefGoogle Scholar
  37. 37.
    Moore TA, Vaccaro AR, Anderson PA. Classification of lower cervical spine injuries. Spine. 2006;31:S37–43.CrossRefPubMedGoogle Scholar
  38. 38.
    London S (2011) ACEP. Geriatric patients fare worse after trauma. https://www.acep.org/content.aspx?id=79746.
  39. 39.
    Jeffreys RV. The surgical treatment of cervical myelopathy due to spondylosis and disc degeneration. J Neurol Neurosurg Psychiatry. 1986;49:353–61.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thompson C, Gonsalves JF, Welsh D. Hyperextension injury of the cervical spine with central cord syndrome. Eur Spine J. 2014;24:195–202.CrossRefPubMedGoogle Scholar
  41. 41.
    Dahdaleh NS, Lawton CD, El Ahmadieh TY, Nixon AT, El Tecle NE, Oh S, Fessler RG, Smith ZA. Evidence-based management of central cord syndrome. Neurosurg Focus. 2013;35:E6.CrossRefPubMedGoogle Scholar
  42. 42.
    Aarabi B, Koltz M, Ibrahimi D. Hyperextension cervical spine injuries and traumatic central cord syndrome. Neurosurg Focus. 2008;25(5):E9.  https://doi.org/10.3171/FOC.2008.25.11.E9.CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor AR. The mechanism of injury to the spinal cord in the neck without damage to vertebral column. J Bone Jt Surg Br. 1951;33-B(4):543–7.CrossRefGoogle Scholar
  44. 44.
    O’Dowd JK. Basic principles of management for cervical spine trauma. Eur Spine J. 2009;19:18–22.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lehman D, Sandhu RS, Baga L, Hussain F. CT scanning is sufficient to clear the cervical spine of elderly falls less than 5 feet. Poster presented at: Lehigh Valley Hospital; 2011; Allentown, PA.Google Scholar
  46. 46.
    American Spinal Injury Association. Reference manual for the international standards for neurological classification of spinal cord injury. Chicago: American Spinal Injury Association; 2003.Google Scholar
  47. 47.
    Gunduz H, Binak DF. Autonomic dysreflexia: an important cardiovascular complication in spinal cord injury patients. Cardiol J. 2012;19:215–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Whang PG, Patel AA, Vaccaro AR. The development and evaluation of the subaxial injury classification scoring system for cervical spine trauma. Clin Orthop Relat Res. 2010;469:723–31.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Lauweryns P. Role of conservative treatment of cervical spine injuries. Eur Spine J. 2009;19:23–6.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Jakob W, Wirz M, van Hedel HJ, et al. Difficulty of elderly SCI subjects to translate motor recovery—“body function”—into daily living activities. J Neurotrauma. 2009;26:2037–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Kay ED, Deutsch A, Wuermser LA. Predicting walking at discharge from inpatient rehabilitation after a traumatic spinal cord injury. Arch Phys Med Rehabil. 2007;88:745–50.CrossRefPubMedGoogle Scholar
  52. 52.
    Aito S, D’Andrea M, Werhagen L, et al. Neurological and functional outcome in traumatic central cord syndrome. Spinal Cord. 2007;45:292–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Victor Ryan Lewis
    • 1
  • Stephen Curran Kane
    • 1
  • Ira Martin Garonzik
    • 2
    • 1
  • James Edmond Conway
    • 2
    • 1
  1. 1.Baltimore Neurosurgery and Spine CenterBaltimoreUSA
  2. 2.Department of Neurosurgery at Sinai HospitalBaltimore Neurosurgery and Spine CenterBaltimoreUSA

Personalised recommendations