Skip to main content

Céa-Type Quasi-Optimality and Convergence Rates for (Adaptive) Vertex-Centered FVM

  • 913 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 199)

Abstract

For a general second order linear elliptic PDE, we show a generalized Céa lemma for a vertex-centered finite volume method (FVM). The latter implies, in particular, a comparison result between the solutions of FVM and the finite element method (FEM). Furthermore, for a symmetric PDE, i.e., no convection is present, we prove linear convergence with generically optimal algebraic rates for an adaptive FVM algorithm.

Keywords

  • Finite volume method
  • Céa-type quasi-optimality
  • A posteriori error estimators
  • Adaptive algorithm
  • Local mesh-refinement
  • Optimal convergence rates

MSC (2010)

  • 65N08
  • 65N30
  • 65N50
  • 65N15
  • 65N12
  • 41A25

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-57397-7_14
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57397-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  1. Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67, 1195–1253 (2014). doi:10.1016/j.camwa.2013.12.003

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Erath, C.: A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method. SIAM J. Numer. Anal. 51(3), 1777–1804 (2013). doi:10.1137/110854771

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Erath, C., Praetorius, D.: Adaptive vertex-centered finite volume methods with convergence rates. SIAM J. Numer. Anal. 54(4), 2228–2255 (2016). doi:10.1137/15M1036701

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Erath, C., Praetorius, D.: Convergence rates of adaptive vertex-centered finite volume methods for general second order linear elliptic PDEs. In preparation (May) (2017)

    Google Scholar 

  5. Erath, C., Of, G., Sayas, F.-J.: A non-symmetric coupling of the finite volume method and the boundary element method. Numer. Math. 135(3), 895–922 (2017). doi:10.1007/s00211-016-0820-3

  6. Feischl, M., Führer, T., Praetorius, D.: Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. SIAM J. Numer. Anal. 52(2), 601–625 (2014). doi:10.1137/120897225

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Erath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Erath, C., Praetorius, D. (2017). Céa-Type Quasi-Optimality and Convergence Rates for (Adaptive) Vertex-Centered FVM. In: Cancès, C., Omnes, P. (eds) Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects . FVCA 2017. Springer Proceedings in Mathematics & Statistics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-57397-7_14

Download citation