Abstract
For a general second order linear elliptic PDE, we show a generalized Céa lemma for a vertex-centered finite volume method (FVM). The latter implies, in particular, a comparison result between the solutions of FVM and the finite element method (FEM). Furthermore, for a symmetric PDE, i.e., no convection is present, we prove linear convergence with generically optimal algebraic rates for an adaptive FVM algorithm.
Keywords
- Finite volume method
- Céa-type quasi-optimality
- A posteriori error estimators
- Adaptive algorithm
- Local mesh-refinement
- Optimal convergence rates
MSC (2010)
- 65N08
- 65N30
- 65N50
- 65N15
- 65N12
- 41A25
This is a preview of subscription content, access via your institution.
Buying options
References
Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67, 1195–1253 (2014). doi:10.1016/j.camwa.2013.12.003
Erath, C.: A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method. SIAM J. Numer. Anal. 51(3), 1777–1804 (2013). doi:10.1137/110854771
Erath, C., Praetorius, D.: Adaptive vertex-centered finite volume methods with convergence rates. SIAM J. Numer. Anal. 54(4), 2228–2255 (2016). doi:10.1137/15M1036701
Erath, C., Praetorius, D.: Convergence rates of adaptive vertex-centered finite volume methods for general second order linear elliptic PDEs. In preparation (May) (2017)
Erath, C., Of, G., Sayas, F.-J.: A non-symmetric coupling of the finite volume method and the boundary element method. Numer. Math. 135(3), 895–922 (2017). doi:10.1007/s00211-016-0820-3
Feischl, M., Führer, T., Praetorius, D.: Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. SIAM J. Numer. Anal. 52(2), 601–625 (2014). doi:10.1137/120897225
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Erath, C., Praetorius, D. (2017). Céa-Type Quasi-Optimality and Convergence Rates for (Adaptive) Vertex-Centered FVM. In: Cancès, C., Omnes, P. (eds) Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects . FVCA 2017. Springer Proceedings in Mathematics & Statistics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-57397-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-57397-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57396-0
Online ISBN: 978-3-319-57397-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)