Skip to main content

A Discontinuous Galerkin Method for Non-hydrostatic Shallow Water Flows

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems (FVCA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 200))

Included in the following conference series:

Abstract

In this work a non-hydrostatic depth-averaged shallow water model is discretized using the discontinuous Galerkin (DG) Method. The model contains a non-hydrostatic pressure component, similar to Boussinesq-type equations, which allows for dispersive gravity waves. The scheme is a projection method and consists of a predictor step solving the hydrostatic shallow water equations by the Runge-Kutta DG method. In the correction the non-hydrostatic pressure component is computed by satisfying a divergence constraint for the velocity. This step is discretized by application of the DG discretization to the first order elliptic system. The numerical tests confirm the correct dispersion behavior of the method, and show its validity for simple test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bai, Y., Cheung, K.F.: Depth-integrated free-surface flow with parameterized non-hydrostatic pressure. Int. J. Numer. Methods Fluids 71(4), 403–421 (2013). doi:10.1002/fld.3664

    Article  MathSciNet  Google Scholar 

  2. Casulli, V., Stelling, G.: Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J. Hydraul. Eng. 124(7), 678–686 (1998)

    Article  Google Scholar 

  3. Cockburn, B.: Discontinuous galerkin methods. Zeitschrift fr Angewandte Mathematik und Mechanik 83(11), 731–754 (2003). doi:10.1002/zamm.200310088

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui, H., Pietrzak, J., Stelling, G.: Optimal dispersion with minimized poisson equations for non-hydrostatic free surface flows. Ocean Model. 81, 1–12 (2014). doi:10.1016/j.ocemod.2014.06.004

    Article  Google Scholar 

  5. Dumbser, M., Facchini, M.: A space-time discontinuous Galerkin method for Boussinesq-type equations. Appl. Math. Comput. Part 2 272, 336–346 (2016). doi:10.1016/j.amc.2015.06.052

  6. Fringer, O., Gerritsen, M., Street, R.: An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 14(3), 139–173 (2006)

    Article  Google Scholar 

  7. Fuchs, A.: Effiziente parallele Verfahren zur Lösung verteilter, dünnbesetzter Gleichungssysteme eines nichthydrostatischen Tsunamimodells. Ph.D. thesis, AWI, Universität Bremen (2013). http://elib.suub.uni-bremen.de/edocs/00103439-1.pdf

  8. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Publishing Company, Incorporated (2008). doi:10.1007/978-0-387-72067-8

  9. Jeschke, A., Pedersen, G.K., Vater, S., Behrens, J.: Depth-averaged non-hydrostatic extension for shallow water equations with quadratic vertical pressure profile: Equivalence to boussinesq-type equations. Int. J. Numer. Methods Fluids (2017). doi:10.1002/fld.4361. http://dx.doi.org/10.1002/fld.4361. (In press)

  10. Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M.: Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117–134 (1987). doi:10.1017/S0022112087000594

    Article  Google Scholar 

  11. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). doi:10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Stansby, P.K., Zhou, J.G.: Shallow-water flow solver with non-hydrostatic pressure: 2d vertical plane problems. Int. J. Numer. Methods Fluids 28(3), 541–563 (1998). doi:10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0

    Article  MATH  Google Scholar 

  13. Stelling, G., Zijlema, M.: An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids 43(1), 1–23 (2003). doi:10.1002/fld.595

    Article  MathSciNet  MATH  Google Scholar 

  14. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3 edn. Springer (2009)

    Google Scholar 

  15. Ueckermann, M., Lermusiaux, P.: Hybridizable discontinuous Galerkin projection methods for NavierStokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). doi:10.1016/j.jcp.2015.11.028

    Article  MathSciNet  MATH  Google Scholar 

  16. Vater, S., Beisiegel, N., Behrens, J.: A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: one-dimensional case. Adv. Water Resour. 85, 1–13 (2015). doi:10.1016/j.advwatres.2015.08.008

    Article  Google Scholar 

  17. Walters, R.A.: A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. Int. J. Numer. Methods Fluids 49(7), 721–737 (2005). doi:10.1002/fld.1019

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors A.J. and J.B. want to thank the European Union, who funded this work within the project ASTARTE—Assessment, Strategy And Risk Reduction for Tsunamis in Europe—FP7-ENV2013 6.4-3, Grant 603839. The authors J.B. and S.V. acknowledge additional support through the ASCETE project, funded by the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jeschke, A., Vater, S., Behrens, J. (2017). A Discontinuous Galerkin Method for Non-hydrostatic Shallow Water Flows. In: Cancès, C., Omnes, P. (eds) Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. FVCA 2017. Springer Proceedings in Mathematics & Statistics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-57394-6_27

Download citation

Publish with us

Policies and ethics