Skip to main content

Neuronal Correlation Parameter and the Idea of Thermodynamic Entropy of an N-Body Gravitationally Bounded System

  • Conference paper
  • First Online:
GeNeDis 2016

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 987))

Abstract

Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human brain and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riddle, D.R., ed. 2007. Brain Aging: Models, Methods, and Mechanisms. Chapter 12. Boca Raton, FL: CRC Press/Taylor & Francis.

    Google Scholar 

  2. O’Sullivan, M., D.K. Jones, P.E. Summers, R.G. Morris, S.C. Williams, and H.S. Markus. 2001. Evidence for Cortical “Disconnection” as a Mechanism of Age-Related Cognitive Decline. Neurology 57: 632–638.

    Article  PubMed  Google Scholar 

  3. Park, D.C., and P. Reuter-Lorenz. 2009. The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology 60: 173–196.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raz, N., U. Lindenberger, K.M. Rodrigue, K.M. Kennedy, D. Head, et al. 2005. Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex 15 (11): 1676–1689.

    Article  PubMed  Google Scholar 

  5. Head, D., R.L. Buckner, J.S. Shimony, L.E. Williams, and E. Akbudak. 2004. Differential Vulnerability of Anterior White Matter in Nondemented Aging with Minimal Acceleration in Dementia of the Alzheimer Type: Evidence from Diffusion Tensor Imaging. Cerebral Cortex 14 (4): 410–423.

    Article  PubMed  Google Scholar 

  6. Wen, W., and P. Sachdev. 2004. The Topography of White Matter Hyperintensities on Brain MRI in Healthy 60- to 64-Year-Old Individuals. NeuroImage 22 (1): 144–154.

    Article  PubMed  Google Scholar 

  7. Shadlen, M.N., and W.T. Newsome. 1998. The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding. The Journal of Neuroscience 18: 3870–3896.

    CAS  PubMed  Google Scholar 

  8. Tolhurst, D.J., J.A. Movshon, and A.F. Dean. 1983. The Statistical Reliability of Signals in Single Neurons in Cat and Monkey Visual Cortex. Vision Research 23: 775–785.

    Article  CAS  PubMed  Google Scholar 

  9. Averbeck, B.B., P.E. Latham, and A. Pouget. 2006. Neural Correlations, Population Coding and Computation. Nature Reviews Neuroscience 7: 358–366.

    Article  CAS  PubMed  Google Scholar 

  10. Sporns, O., G. Tononi, and R. Kötter. 2005. The Human Connectome: A Structural Description of the Human Brain. PLoS Computational Biology 1 (4): 1–42.

    Article  Google Scholar 

  11. Prasad, P., Burkart, J., Joshi, S.H., Talia, M.N., Toga, W.A., and Thompson, P.M.. 2013 Multimodal Brain Image Anal. 8159, 129–137, 2013. Physics Letters A, 28 (19), 2013.

    Google Scholar 

  12. Saslaw, W.C. 1987. Gravitational Physics of Stellar and Galactic Systems. Cambridge Monographs on Mathematical Physics: 245–248.

    Google Scholar 

  13. Iqbal, N., M.S. Khan, and T. Masood. 2011. Entropy Changes in the Clustering of Galaxies in an Expanding Universe. Natural Science 3 (1): 65–68.

    Article  Google Scholar 

  14. Shoshani, J., W.J. Kupsky, and G.H. Marchant. 2006. Elephant Brain. Part I: Gross Morphology Functions, Comparative Anatomy, and Evolution. Brain Research Bulletin 70: 124–157.

    Article  PubMed  Google Scholar 

  15. Cosgrove, K.P., M.M. Calrolyne, and J.K. Staley. 2007. Evolving Knowledge of Sex Differences in Brain Structure, Function, and Chemistry. Biological Psychiatry 62 (8): 847–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, H., B. Wang, K.P. Normoyle, K. Jackson, K. Spitler, F.M. Sharrock, M.C. Miller, C. Best, D. Llano, and R. Du. 2014. Brain Temperature and Its Fundamental Properties: A Review for Clinical Neuroscientists. Frontiers in Neuroscience 8: 307.

    PubMed  PubMed Central  Google Scholar 

  17. Simpson, S.L., F. DuBois, F. Bowman, and P.J. Laurienti. 2013. Analyzing Complex Functional Brain Networks: Fusing Statistics and Network Science to Understand the Brain. Statistics Surveys 7: 1–36.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsodyks, M. 2008. Computational Neuroscience Grand Challenges - A Humble Attempt at Future Forecast. Frontiers in Neuroscience 2 (1): 17–18.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Beggs, J. 2015. Can There Be a Physics of the Brain? Physical Review Letters 114: 220001.

    Article  PubMed  Google Scholar 

  20. Beggs, M.J. 2008. The Criticality Hypothesis: How Local Cortical Networks Might Optimize Information Processing. Philosophical Transactions of the Royal Society A 366: 329.

    Article  Google Scholar 

  21. Brain Jan. 2014. 137 (1) 12–32; doi:10.1093/brain/awt162.

  22. Brain Temperature and Its Fundamental Properties: A Review for Clinical Neuroscientists, Frontiers in Neuroscience 8: 307, 2014.

    Google Scholar 

  23. Haranas, I., and I. Gkigkitzis. 2013a. Bekestein Bound of Information Number N and Its Relation to Cosmological Parameters in a Universe with and without Cosmological Constant. Modern Modern Physics Letters A 62 (8): 1350077.

    Article  Google Scholar 

  24. ———. 2013b. Number of Information and Its Relation to the Cosmological Constant Resulting from Landauer’s Principle. Astrophysics and Space Science 348 (2): 553–557.

    Article  Google Scholar 

  25. Oligodendrocytes, Astrocytes, and Microglial Cells, NG2+ Cells. Reference: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Chapter 5, Boca Raton (FL): CRC Press/Taylor & Francis; 2007.

    Google Scholar 

  26. The role of the posterior cingulate cortex in cognition and disease, Robert Leech, David J. Sharp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Gkigkitzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Haranas, I., Gkigkitzis, I., Kotsireas, I., Austerlitz, C. (2017). Neuronal Correlation Parameter and the Idea of Thermodynamic Entropy of an N-Body Gravitationally Bounded System. In: Vlamos, P. (eds) GeNeDis 2016. Advances in Experimental Medicine and Biology, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-319-57379-3_4

Download citation

Publish with us

Policies and ethics