Cell-Autonomous Endocannabinoid Production Shapes Polarized and Dynamic Distribution and Signaling Patterns of Cannabinoid CB1 Receptors in Neurons

  • Delphine Ladarre
  • Zsolt Lenkei


Interaction with the highly regulated local lipid environment is emerging as key dynamic component of cellular function through the control of the structure, conformation, and function of cell-membrane-embedded proteins, such as G-protein-coupled receptors (GPCRs). The type-1 cannabinoid receptor CB1, because of a relatively unstable GPCR structure and specific entry sites for lipids diffusing from the plasma membrane, may be particularly sensitive to such effects. In this chapter, we will discuss the first level of this lipid–protein interaction: the cell-autonomous scale, the foundation on which other important layers, such as paracrine or transsynaptic signaling systems, are built in vivo. Recent studies reveal an intricate balance between the polarized production of endocannabinoid (eCB) lipids and the polarized targeting and signaling of CB1. The endocannabinoid 2-arachidonoylglycerol (2-AG), which is specifically produced in the somatodendritic plasma membrane, exerts cell-autonomous tonic activation on somatodendritic CB1 receptors. This activation, in addition to important local signaling effects, also regulates CB1 responses to other cannabinoids and provides the driving force for important basal endocytosis, which is followed by transcytotic CB1 delivery to the axonal plasma membrane, where the large majority of CB1Rs accumulate at steady state. This cell-autonomous tonic CB1 activation is based on two important properties of the endocannabinoid system: the elevated basal production of eCBs in specific regions of the plasma membrane (i.e., basal activation) and the structural instability of the CB1 protein (i.e., constitutive activity). Key elements of this unusually dynamic functional model are valuable to better understand activation mechanisms of presynaptic CB1 receptors and may also explain the high diversity of reported CB1 ligands, ranging from peptide and lipid allo- and orthosteric regulators to the phytocannabinoid Δ9-THC, the psychoactive component of marijuana.


Structural Instability Tonic Activation Axonal Target Somatodendritic Compartment GPCR Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank Christophe Leterrier for the photography of Fig. 1 and Maureen McFadden for the help with the English syntax.


  1. Ahn KH, Scott CE, Abrol R et al (2013) Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins 81:1304–1317. doi: 10.1002/prot.24264 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alewijnse AE, Timmerman H, Jacobs EH et al (2000) The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H(2) receptor. Mol Pharmacol 57:890–898PubMedGoogle Scholar
  3. Alger BE, Kim J (2011) Supply and demand for endocannabinoids. Trends Neurosci:1–12. doi: 10.1016/j.tins.2011.03.003
  4. Ascano M, Richmond A, Borden P, Kuruvilla R (2009) Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci 29:11674–11685. doi: 10.1523/JNEUROSCI.1542-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316. doi: 10.1038/nature02913 PubMedCrossRefGoogle Scholar
  6. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Receptor molecular biology. Elsevier, pp 366–428Google Scholar
  7. Ballesteros JA, Jensen AD, Liapakis G (2001) Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276:29171–29177PubMedCrossRefGoogle Scholar
  8. Baur R, Kielar M, Richter L et al (2013) Molecular analysis of the site for 2-arachidonylglycerol (2-AG) on the β2 subunit of GABAA receptors. J Neurochem 126:29–36. doi: 10.1111/jnc.12270 PubMedCrossRefGoogle Scholar
  9. Bel C, Oguievetskaia K, Pitaval C et al (2009) Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 122:3403–3413. doi: 10.1242/jcs.050526 PubMedCrossRefGoogle Scholar
  10. Benard G, Massa F, Puente N et al (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci 15:558–564. doi: 10.1038/nn.3053 PubMedCrossRefGoogle Scholar
  11. Bisogno T, Howell F, Williams G et al (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468. doi: 10.1083/jcb.200305129 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bodor AL (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25:6845–6856. doi: 10.1523/JNEUROSCI.0442-05.2005 PubMedCrossRefGoogle Scholar
  13. Brailoiu GC, Oprea TI, Zhao P et al (2011) Intracellular Cannabinoid Type 1 (CB1) receptors are activated by anandamide. J Biol Chem 286:29166–29174. doi: 10.1074/jbc.M110.217463 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Breivogel CS, Childers SR (1999) Chronic▵ 9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins …. J Neurochem 73:2447–2459PubMedCrossRefGoogle Scholar
  15. Brown MF (2012) Curvature forces in membrane lipid–protein interactions. Biochemistry 51:9782–9795. doi: 10.1021/bi301332v PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buggia-Prévot V, Fernandez CG, Riordan S et al (2014) Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Mol Neurodegener 9(1). doi: 10.1186/1750-1326-9-1
  17. Burack MA, Silverman MA, Banker G (2000) The role of selective transport in neuronal protein sorting. Neuron 26:465–472PubMedCrossRefGoogle Scholar
  18. Carrel D, Simon A, Emerit MB et al (2011) Axonal targeting of the 5-HT1B serotonin receptor relies on structure-specific constitutive activation. Traffic 12:1501–1520. doi: 10.1111/j.1600-0854.2011.01260.x PubMedCrossRefGoogle Scholar
  19. Chanrion B, Mannoury la Cour C, Gavarini S et al (2008) Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-hydroxytryptamine2C receptors: differential modulation of cell surface expression and signal transduction. Mol Pharmacol 73:748–757. doi: 10.1124/mol.107.041574 PubMedCrossRefGoogle Scholar
  20. Chicca A, Marazzi J, Nicolussi S, Gertsch J (2012) Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 287:34660–34682. doi: 10.1074/jbc.M112.373241 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cid-Arregui A, Parton RG, Simons K, Dotti CG (1995) Nocodazole-dependent transport, and brefeldin A – sensitive processing and sorting, of newly synthesized membrane proteins in cultured neurons. J Neurosci 15:4259–4269PubMedGoogle Scholar
  22. Coutts AA, Anavi-Goffer S, Ross RA et al (2001) Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci 21:2425–2433PubMedGoogle Scholar
  23. Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  24. Curran HV, Freeman TP, Mokrysz C et al (2016) Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci 17:293–306. doi: 10.1038/nrn.2016.28 PubMedCrossRefGoogle Scholar
  25. D’Antona AM, Ahn KH, Kendall DA (2006) Mutations of CB1 T210 produce active and inactive receptor forms: correlations with ligand affinity, receptor stability, and cellular localization. Biochemistry 45:5606–5617. doi: 10.1021/bi060067k PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dawaliby R, Trubbia C, Delporte C et al (2016) Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol 12:35–39. doi: 10.1038/nchembio.1960 PubMedCrossRefGoogle Scholar
  27. Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25:293–303. doi: 10.1152/physiol.00002.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dudok B, Barna L, Ledri M et al (2015) Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci. doi: 10.1038/nn.3892 PubMedGoogle Scholar
  29. Ellis J, Pediani JD, Canals M et al (2006) Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 281:38812–38824. doi: 10.1074/jbc.M602494200 PubMedCrossRefGoogle Scholar
  30. Engelstoft MS, Norn C, Hauge M et al (2014) Structural basis for constitutive activity and agonist-induced activation of the enteroendocrine fat sensor GPR119. Br J Pharmacol 171:5774–5789. doi: 10.1111/bph.12877 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fache M-P, Moussif A, Fernandes F et al (2004) Endocytotic elimination and domain-selective tethering constitute a potential mechanism of protein segregation at the axonal initial segment. J Cell Biol 166:571–578. doi: 10.1083/jcb.200312155 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fišar Z, Singh N, Hroudová J (2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 231:62–71. doi: 10.1016/j.toxlet.2014.09.002 PubMedCrossRefGoogle Scholar
  33. Fowler CJ (2013) Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 280:1895–1904. doi: 10.1111/febs.12212 PubMedCrossRefGoogle Scholar
  34. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066. doi: 10.1152/physrev.00004.2003 PubMedCrossRefGoogle Scholar
  35. Fu J, Bottegoni G, Sasso O et al (2012) A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci 15:64–69. doi: 10.1038/nn.2986 CrossRefGoogle Scholar
  36. Gabrielli M, Battista N, Riganti L et al (2015) Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep 16:213–220. doi: 10.15252/embr.201439668 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Garrido JJ, Fernandes F, Giraud P et al (2001) Identification of an axonal determinant in the C-terminus of the sodium channel Na(v)1.2. EMBO J 20:5950–5961. doi: 10.1093/emboj/20.21.5950 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gether U, Ballesteros JA, Seifert R et al (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272:2587–2590PubMedCrossRefGoogle Scholar
  39. Gilliland CT, Kufareva I, Handel T (2015) Structural analysis of the constitutive activity of the chemokine receptor CCR1. FASEB J 29:893.5. doi: 10.1096/fj.1530-6860 Google Scholar
  40. González S, Cebeira M, Fernández-Ruiz J (2005) Cannabinoid tolerance and dependence: a review of studies in laboratory animals. Pharmacol Biochem Behav 81:300–318. doi: 10.1016/j.pbb.2005.01.028 PubMedCrossRefGoogle Scholar
  41. Graham ES, Ball N, Scotter EL et al (2006) Induction of Krox-24 by endogenous cannabinoid type 1 receptors in Neuro2A cells is mediated by the MEK-ERK MAPK pathway and is suppressed by the phosphatidylinositol 3-kinase pathway. J Biol Chem 281:29085–29095. doi: 10.1074/jbc.M602516200 PubMedCrossRefGoogle Scholar
  42. Grimsey NL, Graham ES, Dragunow M, Glass M (2010) Cannabinoid receptor 1 trafficking and the role of the intracellular pool: implications for therapeutics. Biochem Pharmacol:1–13. doi: 10.1016/j.bcp.2010.06.007
  43. Hanyaloglu AC, Zastrow MV (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568. doi: 10.1146/annurev.pharmtox.48.113006.094830 PubMedCrossRefGoogle Scholar
  44. Hebert-Chatelain E, Reguero L, Puente N et al (2014) Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor. Mol Metab 3:495–504. doi: 10.1016/j.molmet.2014.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hentges ST, Low MJ, Williams JT (2005) Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 25:9746–9751. doi: 10.1523/JNEUROSCI.2769-05.2005 PubMedCrossRefGoogle Scholar
  46. Holliday ND, Holst B, Rodionova EA et al (2007) Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor. Mol Endocrinol 21:3100–3112. doi: 10.1210/me.2007-0254 PubMedCrossRefGoogle Scholar
  47. Holst B, Holliday ND, Bach A et al (2004) Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 279:53806–53817. doi: 10.1074/jbc.M407676200 PubMedCrossRefGoogle Scholar
  48. Horton AC, Ehlers MD (2003) Neuronal polarity and trafficking. Neuron 40:277–295PubMedCrossRefGoogle Scholar
  49. Howlett AC, Reggio PH, Childers SR et al (2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 163:1329–1343. doi: 10.1111/j.1476-5381.2011.01364.x PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hsieh C, Brown S, Derleth C, Mackie K (1999) Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 73:493–501PubMedCrossRefGoogle Scholar
  51. Hurst DP, Schmeisser M, Reggio PH (2013) Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations. Chem Phys Lipids 169:46–56. doi: 10.1016/j.chemphyslip.2013.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Irannejad R, Zastrow von M (2014) GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 27:109–116. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  53. Jacquier V, Prummer M, Segura J-M et al (2006) Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci U S A 103:14325–14330. doi: 10.1073/pnas.0603942103 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558. doi: 10.1146/annurev-neuro-062111-150420 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Katona I, Sperlágh B, Sík A et al (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558PubMedGoogle Scholar
  56. Katona I, Rancz EA, Acsady L et al (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518PubMedGoogle Scholar
  57. Katona I, Urbán GM, Wallace M et al (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26:5628–5637. doi: 10.1523/JNEUROSCI.0309-06.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kawamura Y, Fukaya M, Maejima T et al (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 26:2991–3001. doi: 10.1523/JNEUROSCI.4872-05.2006 PubMedCrossRefGoogle Scholar
  59. Khajehali E, Malone DT, Glass M et al (2015) Biased agonism and biased allosteric modulation at the CB1 cannabinoid receptor. Mol Pharmacol 88:368–379. doi: 10.1124/mol.115.099192 PubMedCrossRefGoogle Scholar
  60. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  61. Koch T, Wu D-F, Yang L-Q et al (2006) Role of phospholipase D2 in the agonist-induced and constitutive endocytosis of G-protein coupled receptors. J Neurochem 97:365–372. doi: 10.1111/j.1471-4159.2006.03736.x PubMedCrossRefGoogle Scholar
  62. Ladarre D, Roland AB, Biedzinski S et al (2015) Polarized cellular patterns of endocannabinoid production and detection shape cannabinoid signaling in neurons. Front Cell Neurosci 8:426–426. doi: 10.3389/fncel.2014.00426 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lasiecka ZM, Winckler B (2011) Mechanisms of polarized membrane trafficking in neurons – Focusing in on endosomes. Mol Cell Neurosci 48:278–287. doi: 10.1016/j.mcn.2011.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lee SH, Ledri M, Toth B et al (2015) Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release. J Neurosci 35:10039–10057. doi: 10.1523/JNEUROSCI.4112-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lenkey N, Kirizs T, Holderith N et al (2015) Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals. Nat Commun 6:6557. doi: 10.1038/ncomms7557 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Leterrier C, Dargent B (2014) No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Semin Cell Dev Biol 27:44–51. doi: 10.1016/j.semcdb.2013.11.001 PubMedCrossRefGoogle Scholar
  67. Leterrier C, Bonnard D, Carrel D et al (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021PubMedCrossRefGoogle Scholar
  68. Leterrier C, Lainé J, Darmon M et al (2006) Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 26:3141–3153. doi: 10.1523/JNEUROSCI.5437-05.2006 PubMedCrossRefGoogle Scholar
  69. Leung K, Elmes MW, Glaser ST et al (2013) Role of FAAH-like anandamide transporter in anandamide inactivation. PLoS One 8:e79355. doi: 10.1371/journal.pone.0079355 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Losonczy A, Biró ÁA, Nusser Z (2004) Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc Natl Acad Sci U S A 101:1362–1367. doi: 10.1073/pnas.0304752101 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Maccarrone M, Dainese E, Oddi S (2009) Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci 35:601–608. doi: 10.1016/j.tibs.2010.05.008 CrossRefGoogle Scholar
  72. Manglik A, Kobilka B (2014) The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr Opin Cell Biol 27:136–143. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  73. Marinelli S, Pacioni S, Bisogno T et al (2008) The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci 28:13532–13541PubMedPubMedCentralCrossRefGoogle Scholar
  74. Marion S, Weiner DM, Caron MG (2004) RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J Biol Chem 279:2945–2954. doi: 10.1074/jbc.M308742200 PubMedCrossRefGoogle Scholar
  75. Maroso M, Szabó GG, Kim HK et al (2016) Cannabinoid control of learning and memory through HCN channels. Neuron 89:1059–1073. doi: 10.1016/j.neuron.2016.01.023 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225PubMedCrossRefGoogle Scholar
  77. Martini L, Waldhoer M, Pusch M et al (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 21:802–811. doi: 10.1096/fj.06-7132com PubMedCrossRefGoogle Scholar
  78. Martini L, Thompson D, Kharazia V, Whistler JL (2010) Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology 35:1363–1373. doi: 10.1038/npp.2010.6 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mattila PK, Batista FD, Treanor B (2016) Dynamics of the actin cytoskeleton mediates receptor cross talk: an emerging concept in tuning receptor signaling. J Cell Biol 212:267–280. doi: 10.1083/jcb.201504137 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mátyás F, Yanovsky Y, Mackie K et al (2006) Subcellular localization of type 1 cannabinoid receptors in the rat basal ganglia. NSC 137:337–361. doi: 10.1016/j.neuroscience.2005.09.005 Google Scholar
  81. McDonald NA, Henstridge CM, Connolly CN, Irving AJ (2007) An essential role for constitutive endocytosis, but not activity, in the axonal targeting of the CB1 cannabinoid receptor. Mol Pharmacol 71:976–984. doi: 10.1124/mol.106.029348 PubMedCrossRefGoogle Scholar
  82. McIntosh HH, Song C, Howlett AC (1998) CB1 cannabinoid receptor: cellular regulation and distribution in N18TG2 neuroblastoma cells. Mol Brain Res 53:163–173. doi: 10.1016/S0169-328X(97)00294-5 PubMedCrossRefGoogle Scholar
  83. Mikasova L, Groc L, Choquet D, Manzoni OJ (2008) Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization. Proc Natl Acad Sci U S A 105:18596–18601. doi: 10.1073/pnas.0805959105 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mohammad S, Baldini G, Granell S et al (2007) Constitutive traffic of melanocortin-4 receptor in Neuro2A cells and immortalized hypothalamic neurons. J Biol Chem 282:4963–4974. doi: 10.1074/jbc.M608283200 PubMedCrossRefGoogle Scholar
  85. Morales P, Goya P, Jagerovic N, Hernandez-Folgado L (2016) Allosteric modulators of the CB1 cannabinoid receptor: a structural update review. Cannabis Cannabinoid Res 1:22–30. doi: 10.1089/can.2015.0005 CrossRefGoogle Scholar
  86. Morisset S, Rouleau A, Ligneau X et al (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408:860–864. doi: 10.1038/35048583 PubMedCrossRefGoogle Scholar
  87. Morozov YM, Dominguez MH, Varela L et al (2013) Antibodies to cannabinoid type 1 receptor co-react with stomatin-like protein 2 in mouse brain mitochondria. Eur J Neurosci 38:2341–2348. doi: 10.1111/ejn.12237 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Morozov YM, Sun Y-Y, Kuan C-Y, Rakic P (2015) Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain. Eur J Neurosci 43:245–257. doi: 10.1111/ejn.13124 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Morris DP (2004) Cellular trafficking of human 1a-adrenergic receptors is continuous and primarily agonist-independent. Mol Pharmacol 66:843–854. doi: 10.1124/mol.104.000430 PubMedCrossRefGoogle Scholar
  90. Neu A, Földy C, Soltesz I (2007) Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J Physiol 578:233–247. doi: 10.1113/jphysiol.2006.115691 PubMedCrossRefGoogle Scholar
  91. Nyiri G, Cserep C, Szabadits E et al (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136:811–822. doi: 10.1016/j.neuroscience.2005.01.026 PubMedCrossRefGoogle Scholar
  92. Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  93. Parton RG, Dotti CG (1993) Cell biology of neuronal endocytosis. J Neurosci Res 36:1–9. doi: 10.1002/jnr.490360102 PubMedCrossRefGoogle Scholar
  94. Parton RG, Simons K, Dotti CG (1992) Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol 119:123–137. doi: 10.2307/1615258 PubMedCrossRefGoogle Scholar
  95. Pertwee RG (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 76:1307–1324. doi: 10.1016/j.lfs.2004.10.025 PubMedCrossRefGoogle Scholar
  96. Pertwee RG (2015) Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol 231:1–37. doi: 10.1007/978-3-319-20825-1_1 PubMedCrossRefGoogle Scholar
  97. Pertwee RG, Howlett AC, Abood ME et al (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631. doi: 10.1124/pr.110.003004 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385. doi: 10.1038/nature08147 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pickel VM, Chan J, Kash TL et al (2004) Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. NSC 127:101–112. doi: 10.1016/j.neuroscience.2004.05.015 Google Scholar
  100. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884. doi: 10.1038/nrn1247 PubMedCrossRefGoogle Scholar
  101. Reggio PH (2010) Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr Med Chem 17:1468–1486PubMedPubMedCentralCrossRefGoogle Scholar
  102. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197PubMedCrossRefGoogle Scholar
  103. Rinaldi-Carmona M, Le Duigou A, Oustric D et al (1998) Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther 287:1038–1047PubMedGoogle Scholar
  104. Rozenfeld R, Devi LA (2008) Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J 22:2311–2322. doi: 10.1096/fj.07-102731 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Saka SK, Honigmann A, Eggeling C et al (2013) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 5:4509–4509. doi: 10.1038/ncomms5509 Google Scholar
  106. Sampo B, Kaech S, Kunz S, Banker G (2003) Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37:611–624PubMedCrossRefGoogle Scholar
  107. Scavone JL, Mackie K, Van Bockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31. doi: 10.1016/j.brainres.2009.11.023 PubMedCrossRefGoogle Scholar
  108. Schirris TJJ, Ritschel T, Herma Renkema G et al (2015) Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity. Sci Rep 5:14533. doi: 10.1038/srep14533 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Scott CE, Abrol R, Ahn KH et al (2012) Molecular basis for dramatic changes in cannabinoid CB1 G protein-coupled receptor activation upon single and double point mutations. Protein Sci 22:101–113. doi: 10.1002/pro.2192 PubMedCentralCrossRefGoogle Scholar
  110. Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedeberg's Arch Pharmacol 366:381–416. doi: 10.1007/s00210-002-0588-0 CrossRefGoogle Scholar
  111. Sigel E, Baur R, Rácz I et al (2011) The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci U S A 108:18150–18155. doi: 10.1073/pnas.1113444108 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Simon AC, Loverdo C, Gaffuri A-L et al (2013) Activation-dependent plasticity of polarized GPCR distribution on the neuronal surface. J Mol Cell Biol 5:250–265. doi: 10.1093/jmcb/mjt014 PubMedCrossRefGoogle Scholar
  113. Sim-Selley LJ (2003) Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 15:91–119PubMedCrossRefGoogle Scholar
  114. Sim-Selley LJ, Martin BR (2002) Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther 303:36–44. doi: 10.1124/jpet.102.035618 PubMedCrossRefGoogle Scholar
  115. Sim-Selley LJ, Schechter NS, Rorrer WK et al (2006) Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 70:986–996. doi: 10.1124/mol.105.019612 PubMedCrossRefGoogle Scholar
  116. Sinclair GI, Baas PW, Heidemann SR (1988) Role of microtubules in the cytoplasmic compartmentation of neurons. II. Endocytosis in the growth cone and neurite shaft. Brain Res 450:60–68PubMedCrossRefGoogle Scholar
  117. Singh N, Hroudová J, Fišar Z (2015) Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J Mol Neurosci 56:926–931. doi: 10.1007/s12031-015-0545-2 PubMedCrossRefGoogle Scholar
  118. Soltesz I, Alger BE, Kano M et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277. doi: 10.1038/nrn3937 PubMedCrossRefGoogle Scholar
  119. Spivak CE, Kim W, Liu Q-R et al (2012) Blockade of β-cell KATP channels by the endocannabinoid, 2-arachidonoylglycerol. Biochem Biophys Res Commun 423:13–18. doi: 10.1016/j.bbrc.2012.05.042 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Starke K (1981) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21:7–30PubMedCrossRefGoogle Scholar
  121. Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778. doi: 10.1038/42015 PubMedCrossRefGoogle Scholar
  122. Straiker A, Mitjavila J, Yin D et al (2015) Aiming for allosterism: evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol Res 99:370–376. doi: 10.1016/j.phrs.2015.07.017 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Südhof TC, Malenka RC (2008) Understanding synapses: past, present, and future. Neuron 60:469–476. doi: 10.1016/j.neuron.2008.10.011 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Szabó GG, Lenkey N, Holderith N et al (2014) Presynaptic calcium channel inhibition underlies CB1 cannabinoid receptor-mediated suppression of GABA release. J Neurosci 34:7958–7963. doi: 10.1523/JNEUROSCI.0247-14.2014 PubMedCrossRefGoogle Scholar
  125. Tappe-Theodor A, Agarwal N, Katona I et al (2007) A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 27:4165–4177. doi: 10.1523/JNEUROSCI.5648-06.2007 PubMedCrossRefGoogle Scholar
  126. Tehan BG, Bortolato A, Blaney FE et al (2007) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60. doi: 10.1016/j.pharmthera.2014.02.004 CrossRefGoogle Scholar
  127. Thibault K, Carrel D, Bonnard D et al (2013) Activation-dependent subcellular distribution patterns of CB1 cannabinoid receptors in the rat forebrain. Cereb Cortex 23:2581–2591. doi: 10.1093/cercor/bhs240 PubMedCrossRefGoogle Scholar
  128. Turu G, Simon A, Gyombolai P et al (2007) The role of diacylglycerol lipase in constitutive and angiotensin AT1 receptor-stimulated cannabinoid CB1 receptor activity. J Biol Chem 282:7753–7757. doi: 10.1074/jbc.C600318200 PubMedCrossRefGoogle Scholar
  129. Uchigashima M, Narushima M, Fukaya M et al (2007) Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci 27:3663–3676. doi: 10.1523/JNEUROSCI.0448-07.2007 PubMedCrossRefGoogle Scholar
  130. Vallee M, Vitiello S, Bellocchio L et al (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343:94–98. doi: 10.1126/science.1243985 PubMedPubMedCentralCrossRefGoogle Scholar
  131. van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A (2015) Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther 353:246–260PubMedCrossRefGoogle Scholar
  132. Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. doi: 10.1038/nature11896 PubMedCrossRefGoogle Scholar
  133. Vitalis T, Lainé J, Simon A et al (2008) The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro. Eur J Neurosci 28:1705–1718. doi: 10.1111/j.1460-9568.2008.06484.x PubMedCrossRefGoogle Scholar
  134. Ward RJ, Pediani JD, Milligan G (2011) Ligand-induced internalization of the orexin OX(1) and cannabinoid CB(1) receptors assessed via N-terminal SNAP and CLIP-tagging. Br J Pharmacol 162:1439–1452. doi: 10.1111/j.1476-5381.2010.01156.x PubMedPubMedCentralCrossRefGoogle Scholar
  135. Whistler JL, Enquist J, Marley A et al (2002) Modulation of postendocytic sorting of G protein-coupled receptors. Science 297:615–620. doi: 10.1126/science.1073308 PubMedCrossRefGoogle Scholar
  136. Winckler B (2012) Scientiae forum/Models and speculations Pathways for axonal targeting of membrane proteins. Biol Cell 96:669–674. doi: 10.1016/j.biolcel.2004.05.005 CrossRefGoogle Scholar
  137. Wisco D, Anderson ED, Chang MC et al (2003) Uncovering multiple axonal targeting pathways in hippocampal neurons. J Cell Biol 162:1317–1328. doi: 10.1083/jcb.200307069 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wu D-F, Yang L-Q, Goschke A et al (2008) Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J Neurochem 104:1132–1143. doi: 10.1111/j.1471-4159.2007.05063.x PubMedCrossRefGoogle Scholar
  139. Yoshida T, Fukaya M, Uchigashima M et al (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 26:4740–4751. doi: 10.1523/JNEUROSCI.0054-06.2006 PubMedCrossRefGoogle Scholar
  140. Yoshida T, Uchigashima M, Yamasaki M et al (2011) Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proc Natl Acad Sci U S A 108:3059–3064. doi: 10.1073/pnas.1012875108 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang M (2004) Constitutively active G protein-coupled receptor mutants block dictyostelium development. Mol Biol Cell 16:562–572. doi: 10.1091/mbc.E04-06-0456 PubMedCrossRefGoogle Scholar
  142. Zocher M, Zhang C, Rasmussen SGF et al (2012) Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc Natl Acad Sci U S A 109:E3463–E3472. doi: 10.1073/pnas.1210373109 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Brain Plasticity Unit, CNRS and ESPCI ParisPSL Research UniversityParisFrance

Personalised recommendations