Endocannabinoid Signaling in Reward and Addiction: From Homeostasis to Pathology

  • Sarah A. Laredo
  • William R. Marrs
  • Loren H. Parsons


The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity, and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the processing of natural and drug-induced reward states and dysregulated endocannabinoid signaling in the etiology of aberrant reward function and drug addiction. In this chapter, we discuss the influence of endocannabinoid signaling on the rewarding and motivational effects of natural rewards such as food, sex, and social interaction, as well as evidence demonstrating an endocannabinoid influence in the rewarding effects of abused drugs. The effects of long-term drug consumption on endocannabinoid signaling are discussed, along with evidence that the resultant dysregulation of endocannabinoid function contributes to various aspects of drug dependence and addiction including physical symptoms of drug withdrawal, increased stress responsivity, negative affective states, dysregulated synaptic plasticity, dysregulated extinction of drug-related memories, relapse to drug taking, and impaired cognitive function. Lastly, consideration is given to the role for dysregulated endocannabinoid signaling in pathological food reward and eating disorders.



This work was supported by grants from the US National Institutes of Health (NIH): AA020404, AA006420, AA022249 and AA017447 to LHP, and T32 AA 7456-33 and F32 AA025257-01 to SAL. This is manuscript number 29294 from The Scripps Research Institute. This chapter is dedicated in loving memory of Dr. Loren H Parsons. He was an exceptional mentor and compassionate friend who contributed heavily to endocannabinoid research. He has left a strong legacy for the scientific community to build on and will be sorely missed.


  1. al’Absi M, Hatsukami D, Davis GL, Wittmers LE (2004) Prospective examination of effects of smoking abstinence on cortisol and withdrawal symptoms as predictors of early smoking relapse. Drug Alcohol Depend 73(3):267–278. doi: 10.1016/j.drugalcdep.2003.10.014 PubMedCrossRefGoogle Scholar
  2. Abelaira HM, Reus GZ, Quevedo J (2013) Animal models as tools to study the pathophysiology of depression. Revista brasileira de psiquiatria 35(Suppl 2):S112–S120. doi: 10.1590/1516-4446-2013-1098 PubMedCrossRefGoogle Scholar
  3. Adamczyk P, McCreary AC, Przegalinski E, Mierzejewski P, Bienkowski P, Filip M (2009) The effects of fatty acid amide hydrolase inhibitors on maintenance of cocaine and food self-administration and on reinstatement of cocaine-seeking and food-taking behavior in rats. J Physiol Pharmacol 60(3):119–125PubMedGoogle Scholar
  4. Adamczyk P, Faron-Gorecka A, Kusmider M, Dziedzicka-Wasylewska M, Papp M, Filip M (2012a) Long-lasting increase in [(3)H]CP55,940 binding to CB1 receptors following cocaine self-administration and its withdrawal in rats. Brain Res 1451:34–43. doi: 10.1016/j.brainres.2012.02.052 PubMedCrossRefGoogle Scholar
  5. Adamczyk P, Miszkiel J, McCreary AC, Filip M, Papp M, Przegalinski E (2012b) The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res 1444:45–54. doi: 10.1016/j.brainres.2012.01.030 PubMedCrossRefGoogle Scholar
  6. Adermark L, Jonsson S, Ericson M, Soderpalm B (2011) Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology 61(7):1160–1165. doi: 10.1016/j.neuropharm.2011.01.014 PubMedCrossRefGoogle Scholar
  7. Ahmad T, Lauzon NM, de Jaeger X, Laviolette SR (2013) Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus mu-opiate receptor dependent mechanisms. J Neurosci 33(39):15642–15651. doi: 10.1523/JNEUROSCI.1686-13.2013 PubMedCrossRefGoogle Scholar
  8. Ahn K, McKinney MK, Cravatt BF (2008) Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 108(5):1687–1707. doi: 10.1021/cr0782067 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Al Mansouri S, Ojha S, Al Maamari E, Al Ameri M, Nurulain SM, Bahi A (2014) The cannabinoid receptor 2 agonist, beta-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacol Biochem Behav 124:260–268. doi: 10.1016/j.pbb.2014.06.025 PubMedCrossRefGoogle Scholar
  10. Alici T, Appel JB (2004) Increasing the selectivity of the discriminative stimulus effects of delta 9-tetrahydrocannabinol: complete substitution with methanandamide. Pharmacol Biochem Behav 79(3):431–437. doi: 10.1016/j.pbb.2004.08.020 PubMedCrossRefGoogle Scholar
  11. Allen SS, Bade T, Hatsukami D, Center B (2008) Craving, withdrawal, and smoking urges on days immediately prior to smoking relapse. Nicotine Tob Res 10(1):35–45. doi: 10.1080/14622200701705076 PubMedCrossRefGoogle Scholar
  12. Alling C, Balldin J, Bokstrom K, Gottfries CG, Karlsson I, Langstrom G (1982) Studies on duration of a late recovery period after chronic abuse of ethanol. A cross-sectional study of biochemical and psychiatric indicators. Acta Psychiatr Scand 66(5):384–397PubMedCrossRefGoogle Scholar
  13. Alvarez-Jaimes L, Parsons LH (2009) Regional influence of CB1 receptor signaling on ethanol self-administration by rats. Open Neuropsychopharmacol 2:77–85CrossRefGoogle Scholar
  14. Alvarez-Jaimes L, Polis I, Parsons LH (2008) Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology 33(10):2483–2493. doi: 10.1038/sj.npp.1301630 PubMedCrossRefGoogle Scholar
  15. Alvarez-Jaimes L, Stouffer DG, Parsons LH (2009) Chronic ethanol treatment potentiates ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats. J Neurochem 111(1):37-48. doi: 10.1111/j.1471-4159.2009.06301.x
  16. Anderson-Baker WC, McLaughlin CL, Baile CA (1979) Oral and hypothalamic injections of barbiturates, benzodiazepines and cannabinoids and food intake in rats. Pharmacol Biochem Behav 11(5):487–491PubMedCrossRefGoogle Scholar
  17. Andries A, Frystyk J, Flyvbjerg A, Stoving RK (2014) Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. Int J Eat Disord 47(1):18–23. doi: 10.1002/eat.22173 PubMedCrossRefGoogle Scholar
  18. Anggadiredja K, Nakamichi M, Hiranita T, Tanaka H, Shoyama Y, Watanabe S, Yamamoto T (2004) Endocannabinoid system modulates relapse to methamphetamine seeking: possible mediation by the arachidonic acid cascade. Neuropsychopharmacology 29(8):1470–1478. doi: 10.1038/sj.npp.1300454 PubMedCrossRefGoogle Scholar
  19. Annis HM, Sklar SM, Moser AE (1998) Gender in relation to relapse crisis situations, coping, and outcome among treated alcoholics. Addict Behav 23(1):127–131PubMedCrossRefGoogle Scholar
  20. Aracil-Fernandez A, Trigo JM, Garcia-Gutierrez MS, Ortega-Alvaro A, Ternianov A, Navarro D, Robledo P, Berbel P, Maldonado R, Manzanares J (2012) Decreased cocaine motor sensitization and self-administration in mice overexpressing cannabinoid CB(2) receptors. Neuropsychopharmacology 37(7):1749–1763. doi: 10.1038/npp.2012.22 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Arnone M, Maruani J, Chaperon F, Thiebot MH, Poncelet M, Soubrie P, Le Fur G (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology 132(1):104–106PubMedCrossRefGoogle Scholar
  22. Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160(3):467–479. doi: 10.1111/j.1476-5381.2010.00729.x PubMedPubMedCentralCrossRefGoogle Scholar
  23. Balerio GN, Aso E, Berrendero F, Murtra P, Maldonado R (2004) Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. Eur J Neurosci 20(10):2737–2748. doi: 10.1111/j.1460-9568.2004.03714.x PubMedCrossRefGoogle Scholar
  24. Balerio GN, Aso E, Maldonado R (2006) Role of the cannabinoid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology 184(3-4):504–513. doi: 10.1007/s00213-005-0251-9 PubMedCrossRefGoogle Scholar
  25. Barna I, Zelena D, Arszovszki AC, Ledent C (2004) The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci 75(24):2959–2970. doi: 10.1016/j.lfs.2004.06.006 PubMedCrossRefGoogle Scholar
  26. Barrenha GD, Chester JA (2007) Genetic correlation between innate alcohol preference and fear-potentiated startle in selected mouse lines. Alcohol Clin Exp Res 31(7):1081–1088. doi: 10.1111/j.1530-0277.2007.00396.x PubMedCrossRefGoogle Scholar
  27. Basavarajappa BS, Hungund BL (1999) Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoyl phosphatidylethanolamine in SK-N-SH cells. J Neurochem 72(2):522–528PubMedCrossRefGoogle Scholar
  28. Basavarajappa BS, Cooper TB, Hungund BL (1998) Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane. Brain Res 793(1-2):212–218PubMedCrossRefGoogle Scholar
  29. Basavarajappa BS, Saito M, Cooper TB, Hungund BL (2000) Stimulation of cannabinoid receptor agonist 2-arachidonylglycerol by chronic ethanol and its modulation by specific neuromodulators in cerebellar granule neurons. Biochim Biophys Acta 1535(1):78–86PubMedCrossRefGoogle Scholar
  30. Basavarajappa BS, Saito M, Cooper TB, Hungund BL (2003) Chronic ethanol inhibits the anandamide transport and increases extracellular anandamide levels in cerebellar granule neurons. Eur J Pharmacol 466(1-2):73–83PubMedCrossRefGoogle Scholar
  31. Bassareo V, Di Chiara G (1999a) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89(3):637–641PubMedCrossRefGoogle Scholar
  32. Bassareo V, Di Chiara G (1999b) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11(12):4389–4397PubMedCrossRefGoogle Scholar
  33. Bequet F, Uzabiaga F, Desbazeille M, Ludwiczak P, Maftouh M, Picard C, Scatton B, Le Fur G (2007) CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur J Neurosci 26(12):3458–3464. doi: 10.1111/j.1460-9568.2007.05900.x PubMedCrossRefGoogle Scholar
  34. Bermudez-Silva FJ, Cardinal P, Cota D (2012) The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J Psychopharmacol 26(1):114–124. doi: 10.1177/0269881111408458 PubMedCrossRefGoogle Scholar
  35. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG (2010) The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350:43–64. doi: 10.1016/j.brainres.2010.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Bhargava HN (1976) Effect of some cannabinoids on naloxone-precipitated abstinence in morphine-dependent mice. Psychopharmacology 49(3):267–270PubMedCrossRefGoogle Scholar
  37. Biala G, Budzynska B (2008) Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav 89(1):116–125. doi: 10.1016/j.pbb.2007.12.005 PubMedCrossRefGoogle Scholar
  38. Bishop SF, Lauzon NM, Bechard M, Gholizadeh S, Laviolette SR (2011) NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates. Cereb Cortex 21(1):68–80. doi: 10.1093/cercor/bhq060 PubMedCrossRefGoogle Scholar
  39. Blanco-Calvo E, Rivera P, Arrabal S, Vargas A, Pavon FJ, Serrano A, Castilla-Ortega E, Galeano P, Rubio L, Suarez J, Rodriguez de Fonseca F (2014) Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat. Front Integr Neurosci 7:106. doi: 10.3389/fnint.2013.00106 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Blasio A, Iemolo A, Sabino V, Petrosino S, Steardo L, Rice KC, Orlando P, Iannotti FA, Di Marzo V, Zorrilla EP, Cottone P (2013) Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala. Neuropsychopharmacology 38(12):2498–2507. doi: 10.1038/npp.2013.153 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Blednov YA, Cravatt BF, Boehm SL 2nd, Walker D, Harris RA (2007) Role of endocannabinoids in alcohol consumption and intoxication: studies of mice lacking fatty acid amide hydrolase. Neuropsychopharmacology 32(7):1570–1582. doi: 10.1038/sj.npp.1301274 PubMedCrossRefGoogle Scholar
  42. Boctor SY, Martinez JL Jr, Koek W, France CP (2007) The cannabinoid CB1 receptor antagonist AM251 does not modify methamphetamine reinstatement of responding. Eur J Pharmacol 571(1):39–43. doi: 10.1016/j.ejphar.2007.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24(34):7482–7490. doi: 10.1523/JNEUROSCI.1312-04.2004 PubMedCrossRefGoogle Scholar
  44. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11(5):485–494. doi: 10.1101/lm.78804 PubMedCrossRefGoogle Scholar
  45. Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Vogt LJ, Sim-Selley LJ (1999) Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem 73(6):2447–2459PubMedCrossRefGoogle Scholar
  46. Bruijnzeel AW, Repetto M, Gold MS (2004) Neurobiological mechanisms in addictive and psychiatric disorders. Psychiatr Clin North Am 27(4):661–674. doi: 10.1016/j.psc.2004.06.005 PubMedCrossRefGoogle Scholar
  47. Buczynski MW, Parsons LH (2010) Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol 160(3):423–442. doi: 10.1111/j.1476-5381.2010.00787.x PubMedPubMedCentralCrossRefGoogle Scholar
  48. Buczynski MW, Polis IY, Parsons LH (2013) The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area. Neuropsychopharmacology 38(4):574–584. doi: 10.1038/npp.2012.210 PubMedCrossRefGoogle Scholar
  49. Buczynski MW, Herman MA, Hsu KL, Natividad LA, Irimia C, Polis IY, Pugh H, Chang JW, Niphakis MJ, Cravatt BF, Roberto M, Parsons LH (2016) Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc Natl Acad Sci USA 113(4):1086–1091. doi: 10.1073/pnas.1522672113 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Budney AJ, Hughes JR, Moore BA, Novy PL (2001) Marijuana abstinence effects in marijuana smokers maintained in their home environment. Arch Gen Psychiatry 58(10):917–924PubMedCrossRefGoogle Scholar
  51. Bura SA, Burokas A, Martin-Garcia E, Maldonado R (2010) Effects of chronic nicotine on food intake and anxiety-like behaviour in CB(1) knockout mice. Eur Neuropsychopharmacol 20(6):369–378. doi: 10.1016/j.euroneuro.2010.02.003 PubMedCrossRefGoogle Scholar
  52. Burkey RT, Nation JR (1997) (R)-methanandamide, but not anandamide, substitutes for delta 9-THC in a drug-discrimination procedure. Exp Clin Psychopharmacol 5(3):195–202PubMedCrossRefGoogle Scholar
  53. Bystrowska B, Smaga I, Frankowska M, Filip M (2014) Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry 50:1–10. doi: 10.1016/j.pnpbp.2013.12.002 PubMedCrossRefGoogle Scholar
  54. Caille S, Parsons LH (2003) SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats. Eur J Neurosci 18(11):3145–3149PubMedCrossRefGoogle Scholar
  55. Caille S, Parsons LH (2006) Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology 31(4):804–813. doi: 10.1038/sj.npp.1300848 PubMedCrossRefGoogle Scholar
  56. Caille S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH (2007) Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci 27(14):3695–3702. doi: 10.1523/JNEUROSCI.4403-06.2007 PubMedCrossRefGoogle Scholar
  57. Calvigioni D, Hurd YL, Harkany T, Keimpema E (2014) Neuronal substrates and functional consequences of prenatal cannabis exposure. Eur Child Adolesc Psychiatry 23(10):931–941. doi: 10.1007/s00787-014-0550-y PubMedPubMedCentralCrossRefGoogle Scholar
  58. Canseco-Alba A, Rodriguez-Manzo G (2016) Intra-VTA anandamide infusion produces dose-based biphasic effects on male rat sexual behavior expression. Pharmacol Biochem Behav 150-151:182–189. doi: 10.1016/j.pbb.2016.11.004 PubMedCrossRefGoogle Scholar
  59. Carter BL, Tiffany ST (1999) Cue-reactivity and the future of addiction research. Addiction 94(3):349–351PubMedCrossRefGoogle Scholar
  60. Cassin SE, von Ranson KM (2007) Is binge eating experienced as an addiction? Appetite 49(3):687–690. doi: 10.1016/j.appet.2007.06.012 PubMedCrossRefGoogle Scholar
  61. Castane A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 43(5):857–867PubMedCrossRefGoogle Scholar
  62. Castane A, Berrendero F, Maldonado R (2005) The role of the cannabinoid system in nicotine addiction. Pharmacol Biochem Behav 81(2):381–386. doi: 10.1016/j.pbb.2005.01.025 PubMedCrossRefGoogle Scholar
  63. Castelli MP, Paola Piras A, D’Agostino A, Pibiri F, Perra S, Gessa GL, Maccarrone M, Pistis M (2007) Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2. Eur J Pharmacol 573(1-3):11–19. doi: 10.1016/j.ejphar.2007.06.047 PubMedCrossRefGoogle Scholar
  64. Castle DJ (2008) Anxiety and substance use: layers of complexity. Expert Rev Neurother 8(3):493–501. doi: 10.1586/14737175.8.3.493 PubMedCrossRefGoogle Scholar
  65. Ceccarini J, Casteels C, Koole M, Bormans G, Van Laere K (2013) Transient changes in the endocannabinoid system after acute and chronic ethanol exposure and abstinence in the rat: a combined PET and microdialysis study. Eur J Nucl Med Mol Imaging 40(10):1582–1594. doi: 10.1007/s00259-013-2456-1 PubMedCrossRefGoogle Scholar
  66. Ceccarini J, Hompes T, Verhaeghen A, Casteels C, Peuskens H, Bormans G, Claes S, Van Laere K (2014) Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. J Neurosci 34(8):2822–2831. doi: 10.1523/JNEUROSCI.0849-13.2014 PubMedCrossRefGoogle Scholar
  67. Ceccarini J, Kuepper R, Kemels D, van Os J, Henquet C, Van Laere K (2015) [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict Biol 20(2):357–367. doi: 10.1111/adb.12116 PubMedCrossRefGoogle Scholar
  68. Cervino C, Vicennati V, Pasquali R, Pagotto U (2009) Feeding disorders and obesity. Curr Top Behav Neurosci 1:373–385. doi: 10.1007/978-3-540-88955-7_15 PubMedCrossRefGoogle Scholar
  69. Chaperon F, Soubrie P, Puech AJ, Thiebot MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology (Berl) 135(4):324–332CrossRefGoogle Scholar
  70. Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27(4):791–795. doi: 10.1523/JNEUROSCI.4152-06.2007 PubMedCrossRefGoogle Scholar
  71. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30(3):516–524. doi: 10.1038/sj.npp.1300655 PubMedCrossRefGoogle Scholar
  72. Chhatwal JP, Gutman AR, Maguschak KA, Bowser ME, Yang Y, Davis M, Ressler KJ (2009) Functional interactions between endocannabinoid and CCK neurotransmitter systems may be critical for extinction learning. Neuropsychopharmacology 34(2):509–521. doi: 10.1038/npp.2008.97 PubMedCrossRefGoogle Scholar
  73. Cichewicz DL, Haller VL, Welch SP (2001) Changes in opioid and cannabinoid receptor protein following short-term combination treatment with delta(9)-tetrahydrocannabinol and morphine. J Pharmacol Exp Ther 297(1):121–127PubMedGoogle Scholar
  74. Cippitelli A, Bilbao A, Hansson AC, del Arco I, Sommer W, Heilig M, Massi M, Bermudez-Silva FJ, Navarro M, Ciccocioppo R, de Fonseca FR (2005) Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol-seeking behavior in rats. Eur J Neurosci 21(8):2243–2251. doi: 10.1111/j.1460-9568.2005.04056.x PubMedCrossRefGoogle Scholar
  75. Cippitelli A, Bilbao A, Gorriti MA, Navarro M, Massi M, Piomelli D, Ciccocioppo R, Rodriguez de Fonseca F (2007) The anandamide transport inhibitor AM404 reduces ethanol self-administration. Eur J Neurosci 26(2):476–486. doi: 10.1111/j.1460-9568.2007.05665.x PubMedCrossRefGoogle Scholar
  76. Cippitelli A, Cannella N, Braconi S, Duranti A, Tontini A, Bilbao A, Defonseca FR, Piomelli D, Ciccocioppo R (2008) Increase of brain endocannabinoid anandamide levels by FAAH inhibition and alcohol abuse behaviours in the rat. Psychopharmacology (Berl) 198(4):449–460. doi: 10.1007/s00213-008-1104-0 CrossRefGoogle Scholar
  77. Cippitelli A, Astarita G, Duranti A, Caprioli G, Ubaldi M, Stopponi S, Kallupi M, Sagratini G, Rodriguez de Fonseca F, Piomelli D, Ciccocioppo R (2011) Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition. PLoS One 6(11):e28142. doi: 10.1371/journal.pone.0028142 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Clarke RB, Adermark L (2010) Acute ethanol treatment prevents endocannabinoid-mediated long-lasting disinhibition of striatal output. Neuropharmacology 58(4–5):799–805. doi: 10.1016/j.neuropharm.2009.12.006 PubMedCrossRefGoogle Scholar
  79. Coffey SF, Dansky BS, Carrigan MH, Brady KT (2000) Acute and protracted cocaine abstinence in an outpatient population: a prospective study of mood, sleep and withdrawal symptoms. Drug Alcohol Depend 59(3):277–286PubMedCrossRefGoogle Scholar
  80. Cohen C, Perrault G, Voltz C, Steinberg R, Soubrie P (2002) SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 13(5–6):451–463PubMedCrossRefGoogle Scholar
  81. Cohen C, Perrault G, Griebel G, Soubrie P (2005) Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 30(1):145–155. doi: 10.1038/sj.npp.1300541 PubMedCrossRefGoogle Scholar
  82. Colombo G, Agabio R, Fa M, Guano L, Lobina C, Loche A, Reali R, Gessa GL (1998) Reduction of voluntary ethanol intake in ethanol-preferring sP rats by the cannabinoid antagonist SR-141716. Alcohol Alcohol 33(2):126–130PubMedCrossRefGoogle Scholar
  83. Colombo G, Serra S, Brunetti G, Gomez R, Melis S, Vacca G, Carai MM, Gessa L (2002) Stimulation of voluntary ethanol intake by cannabinoid receptor agonists in ethanol-preferring sP rats. Psychopharmacology 159(2):181–187. doi: 10.1007/s002130100887 PubMedCrossRefGoogle Scholar
  84. Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97(2):155–167PubMedCrossRefGoogle Scholar
  85. Conway KP, Compton W, Stinson FS, Grant BF (2006) Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 67(2):247–257PubMedCrossRefGoogle Scholar
  86. Corwin RL, Grigson PS (2009) Symposium overview--Food addiction: fact or fiction? J Nutr 139(3):617–619. doi: 10.3945/jn.108.097691 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Cossu G, Ledent C, Fattore L, Imperato A, Bohme GA, Parmentier M, Fratta W (2001) Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res 118(1):61–65PubMedCrossRefGoogle Scholar
  88. Cota D (2008) The role of the endocannabinoid system in the regulation of hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinol 20(Suppl 1):35–38. doi: 10.1111/j.1365-2826.2008.01673.x PubMedCrossRefGoogle Scholar
  89. Cota D, Steiner MA, Marsicano G, Cervino C, Herman JP, Grubler Y, Stalla J, Pasquali R, Lutz B, Stalla GK, Pagotto U (2007) Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 148(4):1574–1581. doi: 10.1210/en.2005-1649 PubMedCrossRefGoogle Scholar
  90. Cottone P, Sabino V, Steardo L, Zorrilla EP (2008) Intermittent access to preferred food reduces the reinforcing efficacy of chow in rats. Am J Physiol Regul Integr Comp Physiol 295(4):R1066–R1076. doi: 10.1152/ajpregu.90309.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Cottone P, Sabino V, Roberto M, Bajo M, Pockros L, Frihauf JB, Fekete EM, Steardo L, Rice KC, Grigoriadis DE, Conti B, Koob GF, Zorrilla EP (2009a) CRF system recruitment mediates dark side of compulsive eating. Proc Natl Acad Sci USA 106(47):20016–20020. doi: 10.1073/pnas.0908789106 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Cottone P, Sabino V, Steardo L, Zorrilla EP (2009b) Consummatory, anxiety-related and metabolic adaptations in female rats with alternating access to preferred food. Psychoneuroendocrinology 34(1):38–49. doi: 10.1016/j.psyneuen.2008.08.010 PubMedCrossRefGoogle Scholar
  93. Crombag HS, Shaham Y (2002) Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116(1):169–173PubMedCrossRefGoogle Scholar
  94. Dawley HH Jr, Winstead DK, Baxter AS, Gay JR (1979) An attitude survey of the effects of marijuana on sexual enjoyment. J Clin Psychol 35(1):212–217PubMedCrossRefGoogle Scholar
  95. de Bruin NM, Lange JH, Kruse CG, Herremans AH, Schoffelmeer AN, van Drimmelen M, De Vries TJ (2011) SLV330, a cannabinoid CB(1) receptor antagonist, attenuates ethanol and nicotine seeking and improves inhibitory response control in rats. Behav Brain Res 217(2):408–415. doi: 10.1016/j.bbr.2010.11.013 PubMedCrossRefGoogle Scholar
  96. De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di Marzo V (2000) Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett 483(1):52–56PubMedCrossRefGoogle Scholar
  97. De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJ, Schoffelmeer AN (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7(10):1151–1154. doi: 10.1038/nm1001-1151 PubMedCrossRefGoogle Scholar
  98. De Vries TJ, Homberg JR, Binnekade R, Raaso H, Schoffelmeer AN (2003) Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology 168(1-2):164–169. doi: 10.1007/s00213-003-1422-1 PubMedCrossRefGoogle Scholar
  99. De Vries TJ, de Vries W, Janssen MC, Schoffelmeer AN (2005) Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav Brain Res 161(1):164–168. doi: 10.1016/j.bbr.2005.02.021 PubMedCrossRefGoogle Scholar
  100. De Witte P, Pinto E, Ansseau M, Verbanck P (2003) Alcohol and withdrawal: from animal research to clinical issues. Neurosci Biobehav Rev 27(3):189–197PubMedCrossRefGoogle Scholar
  101. Delfs JM, Zhu Y, Druhan JP, Aston-Jones G (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403(6768):430–434. doi: 10.1038/35000212 PubMedCrossRefGoogle Scholar
  102. DePoy L, Daut R, Brigman JL, MacPherson K, Crowley N, Gunduz-Cinar O, Pickens CL, Cinar R, Saksida LM, Kunos G, Lovinger DM, Bussey TJ, Camp MC, Holmes A (2013) Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci USA 110(36):14783–14788. doi: 10.1073/pnas.1308198110 PubMedPubMedCentralCrossRefGoogle Scholar
  103. DeVries AC, Pert A (1998) Conditioned increases in anxiogenic-like behavior following exposure to contextual stimuli associated with cocaine are mediated by corticotropin-releasing factor. Psychopharmacology 137(4):333–340PubMedCrossRefGoogle Scholar
  104. Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 23(12):4850–4857PubMedGoogle Scholar
  105. Di S, Boudaba C, Popescu IR, Weng FJ, Harris C, Marcheselli VL, Bazan NG, Tasker JG (2005) Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus. J Physiol 569(Pt 3):751–760. doi: 10.1113/jphysiol.2005.097477 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Di S, Maxson MM, Franco A, Tasker JG (2009) Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J Neurosci 29(2):393–401. doi: 10.1523/JNEUROSCI.4546-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7(1):69–76. doi: 10.1016/j.coph.2006.11.003 PubMedCrossRefGoogle Scholar
  108. Di Marzo V, Berrendero F, Bisogno T, Gonzalez S, Cavaliere P, Romero J, Cebeira M, Ramos JA, Fernandez-Ruiz JJ (2000) Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. J Neurochem 74(4):1627–1635PubMedCrossRefGoogle Scholar
  109. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410(6830):822–825. doi: 10.1038/35071088 PubMedCrossRefGoogle Scholar
  110. Diergaarde L, de Vries W, Raaso H, Schoffelmeer AN, De Vries TJ (2008) Contextual renewal of nicotine seeking in rats and its suppression by the cannabinoid-1 receptor antagonist Rimonabant (SR141716A). Neuropharmacology 55(5):712–716. doi: 10.1016/j.neuropharm.2008.06.003 PubMedCrossRefGoogle Scholar
  111. Dipatrizio NV, Simansky KJ (2008) Inhibiting parabrachial fatty acid amide hydrolase activity selectively increases the intake of palatable food via cannabinoid CB1 receptors. Am J Physiol Regul Integr Comp Physiol 295(5):R1409–R1414. doi: 10.1152/ajpregu.90484.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Dodd GT, Stark JA, McKie S, Williams SR, Luckman SM (2009) Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience 163(4):1192–1200. doi: 10.1016/j.neuroscience.2009.07.022 PubMedCrossRefGoogle Scholar
  113. Dole VP (1965) Thoughts on narcotics addiction. Bull NY Acad Med 41:211–213Google Scholar
  114. Dole VP, Nyswander ME, Kreek MJ (1966) Narcotic blockade. Arch Intern Med 118(4):304–309PubMedCrossRefGoogle Scholar
  115. Douglas LA, Varlinskaya EI, Spear LP (2004) Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45(3):153–162. doi: 10.1002/dev.20025 PubMedCrossRefGoogle Scholar
  116. D’Souza MS, Markou A (2011) Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract 6(1):4–16PubMedPubMedCentralGoogle Scholar
  117. Ducci F, Goldman D (2012) The genetic basis of addictive disorders. Psychiatr Clin North Am 35(2):495–519. doi: 10.1016/j.psc.2012.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Dudok B, Barna L, Ledri M, Szabo SI, Szabadits E, Pinter B, Woodhams SG, Henstridge CM, Balla GY, Nyilas R, Varga C, Lee SH, Matolcsi M, Cervenak J, Kacskovics I, Watanabe M, Sagheddu C, Melis M, Pistis M, Soltesz I, Katona I (2015) Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 18(1):75–86. doi: 10.1038/nn.3892 PubMedCrossRefGoogle Scholar
  119. Economidou D, Mattioli L, Cifani C, Perfumi M, Massi M, Cuomo V, Trabace L, Ciccocioppo R (2006) Effect of the cannabinoid CB1 receptor antagonist SR-141716A on ethanol self-administration and ethanol-seeking behaviour in rats. Psychopharmacology 183(4):394–403. doi: 10.1007/s00213-005-0199-9 PubMedCrossRefGoogle Scholar
  120. Edwards A, Abizaid A (2016) Driving the need to feed: insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 66:33–53. doi: 10.1016/j.neubiorev.2016.03.032 PubMedCrossRefGoogle Scholar
  121. Epstein DH, Shaham Y (2010) Cheesecake-eating rats and the question of food addiction. Nat Neurosci 13(5):529–531. doi: 10.1038/nn0510-529 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489. doi: 10.1038/nn1579 PubMedCrossRefGoogle Scholar
  123. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363(1507):3125–3135. doi: 10.1098/rstb.2008.0089 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Faleiro LJ, Jones S, Kauer JA (2004) Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 29(12):2115–2125. doi: 10.1038/sj.npp.1300495 PubMedCrossRefGoogle Scholar
  125. Farrimond JA, Mercier MS, Whalley BJ, Williams CM (2011) Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation. Phytother Res 25(2):170–188. doi: 10.1002/ptr.3375 PubMedCrossRefGoogle Scholar
  126. Fattore L, Martellotta MC, Cossu G, Mascia MS, Fratta W (1999) CB1 cannabinoid receptor agonist WIN 55,212-2 decreases intravenous cocaine self-administration in rats. Behav Brain Res 104(1-2):141–146PubMedCrossRefGoogle Scholar
  127. Fattore L, Spano MS, Cossu G, Deiana S, Fratta W (2003) Cannabinoid mechanism in reinstatement of heroin-seeking after a long period of abstinence in rats. Eur J Neurosci 17(8):1723–1726PubMedCrossRefGoogle Scholar
  128. Fattore L, Cossu G, Spano MS, Deiana S, Fadda P, Scherma M, Fratta W (2004) Cannabinoids and reward: interactions with the opioid system. Crit Rev Neurobiol 16(1-2):147–158PubMedCrossRefGoogle Scholar
  129. Fattore L, Deiana S, Spano SM, Cossu G, Fadda P, Scherma M, Fratta W (2005) Endocannabinoid system and opioid addiction: behavioural aspects. Pharmacol Biochem Behav 81(2):343–359. doi: 10.1016/j.pbb.2005.01.031 PubMedCrossRefGoogle Scholar
  130. Ferreira-Vieira TH, Bastos CP, Pereira GS, Moreira FA, Massensini AR (2014) A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice. Hippocampus 24(1):79–88. doi: 10.1002/hipo.22206 PubMedCrossRefGoogle Scholar
  131. Ferrer B, Bermudez-Silva FJ, Bilbao A, Alvarez-Jaimes L, Sanchez-Vera I, Giuffrida A, Serrano A, Baixeras E, Khaturia S, Navarro M, Parsons LH, Piomelli D, Rodriguez de Fonseca F (2007) Regulation of brain anandamide by acute administration of ethanol. Biochem J 404(1):97–104. doi: 10.1042/BJ20061898 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Filip M, Golda A, Zaniewska M, McCreary AC, Nowak E, Kolasiewicz W, Przegalinski E (2006) Involvement of cannabinoid CB1 receptors in drug addiction: effects of rimonabant on behavioral responses induced by cocaine. Pharmacol Rep 58(6):806–819PubMedGoogle Scholar
  133. Fiorino DF, Coury A, Phillips AG (1997) Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci 17(12):4849–4855PubMedGoogle Scholar
  134. Forget B, Hamon M, Thiebot MH (2005) Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology 181(4):722–734. doi: 10.1007/s00213-005-0015-6 PubMedCrossRefGoogle Scholar
  135. Forget B, Barthelemy S, Saurini F, Hamon M, Thiebot MH (2006) Differential involvement of the endocannabinoid system in short- and long-term expression of incentive learning supported by nicotine in rats. Psychopharmacology 189(1):59–69. doi: 10.1007/s00213-006-0525-x PubMedCrossRefGoogle Scholar
  136. Forget B, Coen KM, Le Foll B (2009) Inhibition of fatty acid amide hydrolase reduces reinstatement of nicotine seeking but not break point for nicotine self-administration--comparison with CB(1) receptor blockade. Psychopharmacology (Berl) 205(4):613–624. doi: 10.1007/s00213-009-1569-5 CrossRefGoogle Scholar
  137. Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ (2004) A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci 24(31):6939–6945. doi: 10.1523/JNEUROSCI.0671-04.2004 PubMedCrossRefGoogle Scholar
  138. Freed CR, Yamamoto BK (1985) Regional brain dopamine metabolism: a marker for the speed, direction, and posture of moving animals. Science 229(4708):62–65PubMedCrossRefGoogle Scholar
  139. Freedland CS, Sharpe AL, Samson HH, Porrino LJ (2001) Effects of SR141716A on ethanol and sucrose self-administration. Alcohol Clin Exp Res 25(2):277–282PubMedCrossRefGoogle Scholar
  140. Frieling H, Albrecht H, Jedtberg S, Gozner A, Lenz B, Wilhelm J, Hillemacher T, de Zwaan M, Kornhuber J, Bleich S (2009) Elevated cannabinoid 1 receptor mRNA is linked to eating disorder related behavior and attitudes in females with eating disorders. Psychoneuroendocrinology 34(4):620–624. doi: 10.1016/j.psyneuen.2008.10.014 PubMedCrossRefGoogle Scholar
  141. Gallate JE, McGregor IS (1999) The motivation for beer in rats: effects of ritanserin, naloxone and SR 141716. Psychopharmacology (Berl) 142(3):302–308CrossRefGoogle Scholar
  142. Gallate JE, Saharov T, Mallet PE, McGregor IS (1999) Increased motivation for beer in rats following administration of a cannabinoid CB1 receptor agonist. Eur J Pharmacol 370(3):233–240PubMedCrossRefGoogle Scholar
  143. Gamage TF, Ignatowska-Jankowska BM, Muldoon PP, Cravatt BF, Damaj MI, Lichtman AH (2015) Differential effects of endocannabinoid catabolic inhibitors on morphine withdrawal in mice. Drug Alcohol Depend 146:7–16. doi: 10.1016/j.drugalcdep.2014.11.015 PubMedCrossRefGoogle Scholar
  144. Gamaleddin I, Guranda M, Goldberg SR, Le Foll B (2011) The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br J Pharmacol 164(6):1652–1660. doi: 10.1111/j.1476-5381.2011.01440.x PubMedPubMedCentralCrossRefGoogle Scholar
  145. Gamaleddin I, Wertheim C, Zhu AZ, Coen KM, Vemuri K, Makryannis A, Goldberg SR, Le Foll B (2012a) Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol 17(1):47–61. doi: 10.1111/j.1369-1600.2011.00314.x PubMedCrossRefGoogle Scholar
  146. Gamaleddin I, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B (2012b) Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking. PLoS One 7(1):e29900. doi: 10.1371/journal.pone.0029900 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Gamaleddin I, Guranda M, Scherma M, Fratta W, Makriyannis A, Vadivel SK, Goldberg SR, Le Foll B (2013) AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking. J Psychopharmacol 27(6):564–571. doi: 10.1177/0269881113477710 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Gates P, Albertella L, Copeland J (2015) Cannabis withdrawal and sleep: a systematic review of human studies. Subst Abus. doi: 10.1080/08897077.2015.1023484 PubMedGoogle Scholar
  149. Gearhardt AN, White MA, Masheb RM, Morgan PT, Crosby RD, Grilo CM (2012) An examination of the food addiction construct in obese patients with binge eating disorder. Int J Eat Disord 45(5):657–663. doi: 10.1002/eat.20957 PubMedCrossRefGoogle Scholar
  150. Gerard N, Pieters G, Goffin K, Bormans G, Van Laere K (2011) Brain type 1 cannabinoid receptor availability in patients with anorexia and bulimia nervosa. Biol Psychiatry 70(8):777–784. doi: 10.1016/j.biopsych.2011.05.010 PubMedCrossRefGoogle Scholar
  151. Gerrits MA, Van Ree JM (1996) Effect of nucleus accumbens dopamine depletion on motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Brain Res 713(1-2):114–124PubMedCrossRefGoogle Scholar
  152. Gessa GL, Serra S, Vacca G, Carai MA, Colombo G (2005) Suppressing effect of the cannabinoid CB1 receptor antagonist, SR147778, on alcohol intake and motivational properties of alcohol in alcohol-preferring sP rats. Alcohol Alcohol 40(1):46–53. doi: 10.1093/alcalc/agh114 PubMedCrossRefGoogle Scholar
  153. Getachew B, Hauser SR, Dhaher R, Katner SN, Bell RL, Oster SM, McBride WJ, Rodd ZA (2011) CB1 receptors regulate alcohol-seeking behavior and alcohol self-administration of alcohol-preferring (P) rats. Pharmacol Biochem Behav 97(4):669–675. doi: 10.1016/j.pbb.2010.11.006 PubMedCrossRefGoogle Scholar
  154. Ghosh S, Wise LE, Chen Y, Gujjar R, Mahadevan A, Cravatt BF, Lichtman AH (2013) The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model. Life Sci 92(8–9):498–505. doi: 10.1016/j.lfs.2012.06.020 PubMedCrossRefGoogle Scholar
  155. Glangetas C, Girard D, Groc L, Marsicano G, Chaouloff F, Georges F (2013) Stress switches cannabinoid type-1 (CB1) receptor-dependent plasticity from LTD to LTP in the bed nucleus of the stria terminalis. J Neurosci 33(50):19657–19663. doi: 10.1523/JNEUROSCI.3175-13.2013 PubMedCrossRefGoogle Scholar
  156. Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77(2):299–318PubMedCrossRefGoogle Scholar
  157. Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102(51):18620–18625. doi: 10.1073/pnas.0509591102 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Goeders NE (2002) Stress and cocaine addiction. J Pharmacol Exp Ther 301(3):785–789PubMedCrossRefGoogle Scholar
  159. Goeders NE, Guerin GF (1996) Role of corticosterone in intravenous cocaine self-administration in rats. Neuroendocrinology 64(5):337–348PubMedCrossRefGoogle Scholar
  160. Gonzalez S, Cascio MG, Fernandez-Ruiz J, Fezza F, Di Marzo V, Ramos JA (2002) Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res 954(1):73–81PubMedCrossRefGoogle Scholar
  161. Gonzalez S, Fernandez-Ruiz J, Di Marzo V, Hernandez M, Arevalo C, Nicanor C, Cascio MG, Ambrosio E, Ramos JA (2004a) Behavioral and molecular changes elicited by acute administration of SR141716 to Delta9-tetrahydrocannabinol-tolerant rats: an experimental model of cannabinoid abstinence. Drug Alcohol Depend 74(2):159–170. doi: 10.1016/j.drugalcdep.2003.12.011 PubMedCrossRefGoogle Scholar
  162. Gonzalez S, Valenti M, de Miguel R, Fezza F, Fernandez-Ruiz J, Di Marzo V, Ramos JA (2004b) Changes in endocannabinoid contents in reward-related brain regions of alcohol-exposed rats, and their possible relevance to alcohol relapse. Br J Pharmacol 143(4):455–464. doi: 10.1038/sj.bjp.0705963 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Gorzalka BB, Dang SS (2012) Minireview: Endocannabinoids and gonadal hormones: bidirectional interactions in physiology and behavior. Endocrinology 153(3):1016–1024. doi: 10.1210/en.2011-1643 PubMedCrossRefGoogle Scholar
  164. Gorzalka BB, Hill MN, Hillard CJ (2008) Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev 32(6):1152–1160. doi: 10.1016/j.neubiorev.2008.03.004 PubMedCrossRefGoogle Scholar
  165. Gorzalka BB, Hill MN, Chang SC (2010) Male-female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav 58(1):91–99. doi: 10.1016/j.yhbeh.2009.08.009 PubMedCrossRefGoogle Scholar
  166. Grillon C (2002) Startle reactivity and anxiety disorders: aversive conditioning, context, and neurobiology. Biol Psychiatry 52(10):958–975PubMedCrossRefGoogle Scholar
  167. Grueter BA, Gosnell HB, Olsen CM, Schramm-Sapyta NL, Nekrasova T, Landreth GE, Winder DG (2006) Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 26(12):3210–3219. doi: 10.1523/JNEUROSCI.0170-06.2006 PubMedCrossRefGoogle Scholar
  168. Guegan T, Cutando L, Ayuso E, Santini E, Fisone G, Bosch F, Martinez A, Valjent E, Maldonado R, Martin M (2013) Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. Eur Neuropsychopharmacol 23(2):146–159. doi: 10.1016/j.euroneuro.2012.04.004 PubMedCrossRefGoogle Scholar
  169. Gunduz-Cinar O, Hill MN, McEwen BS, Holmes A (2013) Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci 34(11):637–644. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  170. Hajnal A, Smith GP, Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286(1):R31–R37. doi: 10.1152/ajpregu.00282.2003 PubMedCrossRefGoogle Scholar
  171. Halikas J, Weller R, Morse C (1982) Effects of regular marijuana use on sexual performance. J Psychoactive Drugs 14(1-2):59–70. doi: 10.1080/02791072.1982.10471911 PubMedCrossRefGoogle Scholar
  172. Haller J, Bakos N, Szirmay M, Ledent C, Freund TF (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 16(7):1395–1398PubMedCrossRefGoogle Scholar
  173. Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70(2):671–676PubMedCrossRefGoogle Scholar
  174. Hansson AC, Bermudez-Silva FJ, Malinen H, Hyytia P, Sanchez-Vera I, Rimondini R, Rodriguez de Fonseca F, Kunos G, Sommer WH, Heilig M (2007) Genetic impairment of frontocortical endocannabinoid degradation and high alcohol preference. Neuropsychopharmacology 32(1):117–126. doi: 10.1038/sj.npp.1301034 PubMedCrossRefGoogle Scholar
  175. Hanus L, Avraham Y, Ben-Shushan D, Zolotarev O, Berry EM, Mechoulam R (2003) Short-term fasting and prolonged semistarvation have opposite effects on 2-AG levels in mouse brain. Brain Res 983(1-2):144–151PubMedCrossRefGoogle Scholar
  176. Harloe JP, Thorpe AJ, Lichtman AH (2008) Differential endocannabinoid regulation of extinction in appetitive and aversive Barnes maze tasks. Learn Mem 15(11):806–809. doi: 10.1101/lm.1113008 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13(2):127–137. doi: 10.1177/1073858406296716 PubMedCrossRefGoogle Scholar
  178. Hattori S, Naoi M, Nishino H (1994) Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res Bull 35(1):41–49PubMedCrossRefGoogle Scholar
  179. Hayase T, Yamamoto Y, Yamamoto K (2001) Protective effects of cannabinoid receptor agonists against cocaine and other convulsant-induced toxic behavioural symptoms. J Pharmacy Pharmacol 53(11):1525–1532CrossRefGoogle Scholar
  180. Heifets BD, Castillo PE (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71:283–306. doi: 10.1146/annurev.physiol.010908.163149 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Heilig M, Egli M, Crabbe JC, Becker HC (2010) Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol 15(2):169–184. doi: 10.1111/j.1369-1600.2009.00194.x PubMedPubMedCentralCrossRefGoogle Scholar
  182. Henricks AM, Berger AL, Lugo JM, Baxter-Potter LN, Bieniasz KV, Craft RM, McLaughlin RJ (2016) Sex differences in alcohol consumption and alterations in nucleus accumbens endocannabinoid mRNA in alcohol-dependent rats. Neuroscience 335:195–206. doi: 10.1016/j.neuroscience.2016.08.032 PubMedCrossRefGoogle Scholar
  183. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583PubMedGoogle Scholar
  184. Hernandez G, Cheer JF (2011) Extinction learning of rewards in the rat: is there a role for CB1 receptors? Psychopharmacology 217(2):189–197. doi: 10.1007/s00213-011-2275-7 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Hernandez G, Cheer JF (2015) To act or not to act: endocannabinoid/dopamine interactions in decision-making. Front Behav Neurosci 9:336. doi: 10.3389/fnbeh.2015.00336 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Hershon HI (1977) Alcohol withdrawal symptoms and drinking behavior. J Stud Alcohol 38(5):953–971PubMedCrossRefGoogle Scholar
  187. Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B, Leclair E, Di Marzo V, Meeusen R (2012) Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology 37(6):844–851. doi: 10.1016/j.psyneuen.2011.09.017 PubMedCrossRefGoogle Scholar
  188. Higgs S, Williams CM, Kirkham TC (2003) Cannabinoid influences on palatability: microstructural analysis of sucrose drinking after delta(9)-tetrahydrocannabinol, anandamide, 2-arachidonoyl glycerol and SR141716. Psychopharmacology (Berl) 165(4):370–377. doi: 10.1007/s00213-002-1263-3 CrossRefGoogle Scholar
  189. Hijzen TH, Houtzager SW, Joordens RJ, Olivier B, Slangen JL (1995) Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacology (Berl) 118(2):150–154CrossRefGoogle Scholar
  190. Hill MN, Carrier EJ, McLaughlin RJ, Morrish AC, Meier SE, Hillard CJ, Gorzalka BB (2008) Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem 106(6):2322–2336. doi: 10.1111/j.1471-4159.2008.05567.x PubMedPubMedCentralCrossRefGoogle Scholar
  191. Hill MN, McLaughlin RJ, Morrish AC, Viau V, Floresco SB, Hillard CJ, Gorzalka BB (2009) Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology 34(13):2733–2745. doi: 10.1038/npp.2009.114 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Hill MN, Karatsoreos IN, Hillard CJ, McEwen BS (2010a) Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology 35(9):1333–1338. doi: 10.1016/j.psyneuen.2010.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Hill MN, Titterness AK, Morrish AC, Carrier EJ, Lee TT, Gil-Mohapel J, Gorzalka BB, Hillard CJ, Christie BR (2010b) Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus 20(4):513–523. doi: 10.1002/hipo.20647 PubMedPubMedCentralGoogle Scholar
  194. Hill MN, Hillard CJ, McEwen BS (2011) Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb Cortex 21(9):2056–2064. doi: 10.1093/cercor/bhq280 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Hillard CJ (2015) The endocannabinoid signaling system in the CNS: a primer. Int Rev Neurobiol 125:1–47. doi: 10.1016/bs.irn.2015.10.001 PubMedCrossRefGoogle Scholar
  196. Hine B, Friedman E, Torrelio M, Gershon S (1975) Morphine-dependent rats: blockade of precipitated abstinence by tetrahydrocannabinol. Science 187(4175):443–445PubMedCrossRefGoogle Scholar
  197. Hirvonen J, Zanotti-Fregonara P, Umhau JC, George DT, Rallis-Frutos D, Lyoo CH, Li CT, Hines CS, Sun H, Terry GE, Morse C, Zoghbi SS, Pike VW, Innis RB, Heilig M (2013) Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol Psychiatry 18(8):916–921. doi: 10.1038/mp.2012.100 PubMedCrossRefGoogle Scholar
  198. Hoffman AF, Oz M, Caulder T, Lupica CR (2003) Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J Neurosci 23(12):4815–4820PubMedGoogle Scholar
  199. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435(7045):1108–1112. doi: 10.1038/nature03658 PubMedCrossRefGoogle Scholar
  200. Holter SM, Kallnik M, Wurst W, Marsicano G, Lutz B, Wotjak CT (2005) Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol 510(1-2):69–74. doi: 10.1016/j.ejphar.2005.01.008 PubMedCrossRefGoogle Scholar
  201. Horvath TL, Diano S (2004) The floating blueprint of hypothalamic feeding circuits. Nat Rev Neurosci 5(8):662–667. doi: 10.1038/nrn1479 PubMedCrossRefGoogle Scholar
  202. Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30(2):339–349. doi: 10.1038/sj.npp.1300568 PubMedCrossRefGoogle Scholar
  203. Hughes JR (2007) Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res 9(3):315–327. doi: 10.1080/14622200701188919 PubMedCrossRefGoogle Scholar
  204. Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW (1991) Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatry 48(1):52–59PubMedCrossRefGoogle Scholar
  205. Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C (2003) Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem 84(4):698–704PubMedCrossRefGoogle Scholar
  206. Hurd YL, Michaelides M, Miller ML, Jutras-Aswad D (2014) Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology 76(Pt B):416–424. doi: 10.1016/j.neuropharm.2013.07.028
  207. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009 PubMedCrossRefGoogle Scholar
  208. Iemolo A, Blasio A, St Cyr SA, Jiang F, Rice KC, Sabino V, Cottone P (2013) CRF-CRF1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food. Neuropsychopharmacology 38(12):2456–2466. doi: 10.1038/npp.2013.147 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Ignatowska-Jankowska BM, Muldoon PP, Lichtman AH, Damaj MI (2013) The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology (Berl) 229(4):591–601. doi: 10.1007/s00213-013-3117-6 CrossRefGoogle Scholar
  210. Ignatowska-Jankowska BM, Ghosh S, Crowe MS, Kinsey SG, Niphakis MJ, Abdullah RA, Tao Q, ST ON, Walentiny DM, Wiley JL, Cravatt BF, Lichtman AH (2014) In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br J Pharmacol 171 (6):1392-1407. doi: 10.1111/bph.12298
  211. Ishiguro H, Carpio O, Horiuchi Y, Shu A, Higuchi S, Schanz N, Benno R, Arinami T, Onaivi ES (2010) A nonsynonymous polymorphism in cannabinoid CB2 receptor gene is associated with eating disorders in humans and food intake is modified in mice by its ligands. Synapse 64(1):92–96. doi: 10.1002/syn.20714 PubMedCrossRefGoogle Scholar
  212. Jamshidi N, Taylor DA (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134(6):1151–1154. doi: 10.1038/sj.bjp.0704379 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Janiri L, Martinotti G, Dario T, Reina D, Paparello F, Pozzi G, Addolorato G, Di Giannantonio M, De Risio S (2005) Anhedonia and substance-related symptoms in detoxified substance-dependent subjects: a correlation study. Neuropsychobiology 52(1):37–44. doi: 10.1159/000086176 PubMedCrossRefGoogle Scholar
  214. Jarbe TU, Lamb RJ, Liu Q, Makriyannis A (2006) Discriminative stimulus functions of AM-1346, a CB1R selective anandamide analog in rats trained with Delta9-THC or (R)-methanandamide (AM-356). Psychopharmacology (Berl) 188(3):315–323. doi: 10.1007/s00213-006-0517-x CrossRefGoogle Scholar
  215. Jarrett MM, Limebeer CL, Parker LA (2005) Effect of Delta9-tetrahydrocannabinol on sucrose palatability as measured by the taste reactivity test. Physiol Behav 86(4):475–479. doi: 10.1016/j.physbeh.2005.08.033 PubMedCrossRefGoogle Scholar
  216. Jarrett MM, Scantlebury J, Parker LA (2007) Effect of delta9-tetrahydrocannabinol on quinine palatability and AM251 on sucrose and quinine palatability using the taste reactivity test. Physiol Behav 90(2-3):425–430. doi: 10.1016/j.physbeh.2006.10.003 PubMedCrossRefGoogle Scholar
  217. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146(4):373–390PubMedCrossRefGoogle Scholar
  218. Jing L, Qiu Y, Zhang Y, Li JX (2014) Effects of the cannabinoid CB(1) receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior in rats. Drug Alcohol Depend 143:251–256. doi: 10.1016/j.drugalcdep.2014.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641. doi: 10.1038/nn.2519 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Jose BS, van Oers HA, van de Mheen HD, Garretsen HF, Mackenbach JP (2000) Stressors and alcohol consumption. Alcohol Alcohol 35(3):307–312PubMedCrossRefGoogle Scholar
  221. Justinova Z, Solinas M, Tanda G, Redhi GH, Goldberg SR (2005) The endogenous cannabinoid anandamide and its synthetic analog R(+)-methanandamide are intravenously self-administered by squirrel monkeys. J Neurosci 25(23):5645–5650. doi: 10.1523/JNEUROSCI.0951-05.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Justinova Z, Mangieri RA, Bortolato M, Chefer SI, Mukhin AG, Clapper JR, King AR, Redhi GH, Yasar S, Piomelli D, Goldberg SR (2008a) Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol Psychiatry 64(11):930–937. doi: 10.1016/j.biopsych.2008.08.008 PubMedPubMedCentralCrossRefGoogle Scholar
  223. Justinova Z, Munzar P, Panlilio LV, Yasar S, Redhi GH, Tanda G, Goldberg SR (2008b) Blockade of THC-seeking behavior and relapse in monkeys by the cannabinoid CB(1)-receptor antagonist rimonabant. Neuropsychopharmacology 33(12):2870–2877. doi: 10.1038/npp.2008.21 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Justinova Z, Yasar S, Redhi GH, Goldberg SR (2011) The endogenous cannabinoid 2-arachidonoylglycerol is intravenously self-administered by squirrel monkeys. J Neurosci 31(19):7043–7048. doi: 10.1523/JNEUROSCI.6058-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  225. Justinova Z, Panlilio LV, Moreno-Sanz G, Redhi GH, Auber A, Secci ME, Mascia P, Bandiera T, Armirotti A, Bertorelli R, Chefer SI, Barnes C, Yasar S, Piomelli D, Goldberg SR (2015) Effects of fatty acid amide hydrolase (FAAH) inhibitors in non-human primate models of nicotine reward and relapse. Neuropsychopharmacology. doi: 10.1038/npp.2015.62 PubMedPubMedCentralGoogle Scholar
  226. Jyotaki M, Shigemura N, Ninomiya Y (2010) Modulation of sweet taste sensitivity by orexigenic and anorexigenic factors. Endocr J 57(6):467–475PubMedCrossRefGoogle Scholar
  227. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413. doi: 10.1176/appi.ajp.162.8.1403 PubMedCrossRefGoogle Scholar
  228. Kamprath K, Romo-Parra H, Haring M, Gaburro S, Doengi M, Lutz B, Pape HC (2011) Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology 36(3):652–663. doi: 10.1038/npp.2010.196 PubMedCrossRefGoogle Scholar
  229. Kaplan GB, Heinrichs SC, Carey RJ (2011) Treatment of addiction and anxiety using extinction approaches: neural mechanisms and their treatment implications. Pharmacol Biochem Behav 97(3):619–625. doi: 10.1016/j.pbb.2010.08.004 PubMedCrossRefGoogle Scholar
  230. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94(1):121–135. doi: 10.1016/j.physbeh.2007.11.037 PubMedCrossRefGoogle Scholar
  231. Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86(5):773–795. doi: 10.1016/j.physbeh.2005.08.066 PubMedCrossRefGoogle Scholar
  232. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52(12):1048–1060PubMedCrossRefGoogle Scholar
  233. Kinsey SG, Wise LE, Ramesh D, Abdullah R, Selley DE, Cravatt BF, Lichtman AH (2013) Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther 345(3):492–501. doi: 10.1124/jpet.112.201426 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Kirkham TC, Williams CM (2001) Endogenous cannabinoids and appetite. Nutr Res Rev 14(1):65–86. doi: 10.1079/NRR200118 PubMedCrossRefGoogle Scholar
  235. Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136(4):550–557. doi: 10.1038/sj.bjp.0704767 PubMedPubMedCentralCrossRefGoogle Scholar
  236. Klein C, Hill MN, Chang SC, Hillard CJ, Gorzalka BB (2012) Circulating endocannabinoid concentrations and sexual arousal in women. J Sex Med 9(6):1588–1601. doi: 10.1111/j.1743-6109.2012.02708.x PubMedCrossRefGoogle Scholar
  237. Klugmann M, Goepfrich A, Friemel CM, Schneider M (2011) AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior, and emotional reactivity. Front Behav Neurosci 5:37. doi: 10.3389/fnbeh.2011.00037 PubMedPubMedCentralCrossRefGoogle Scholar
  238. Klump KL, Miller KB, Keel PK, McGue M, Iacono WG (2001) Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychol Med 31(4):737–740PubMedCrossRefGoogle Scholar
  239. Kodas E, Cohen C, Louis C, Griebel G (2007) Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology (Berl) 194(2):161–171. doi: 10.1007/s00213-007-0813-0 CrossRefGoogle Scholar
  240. Koff WC (1974) Marijuana and sexual activity. J Sex Res 10(3):194–204. doi: 10.1080/00224497409550850 PubMedCrossRefGoogle Scholar
  241. Komisaruk BR, Whipple B, Crawford A, Liu WC, Kalnin A, Mosier K (2004) Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves. Brain Res 1024(1–2):77–88. doi: 10.1016/j.brainres.2004.07.029 PubMedCrossRefGoogle Scholar
  242. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13(5):177–184PubMedCrossRefGoogle Scholar
  243. Koob GF (2010) The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 1314:3–14. doi: 10.1016/j.brainres.2009.11.008 PubMedCrossRefGoogle Scholar
  244. Koob GF (2013) Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci 13:3–30. doi: 10.1007/7854_2011_129 PubMedPubMedCentralCrossRefGoogle Scholar
  245. Koob G, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164(8):1149–1159. doi: 10.1176/appi.ajp.2007.05030503 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335):52–58PubMedCrossRefGoogle Scholar
  247. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238. doi: 10.1038/npp.2009.110 PubMedCrossRefGoogle Scholar
  248. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW Jr, George O (2014) Addiction as a stress surfeit disorder. Neuropharmacology 76(Pt B):370–382. doi: 10.1016/j.neuropharm.2013.05.024
  249. Kupferschmidt DA, Klas PG, Erb S (2012a) Cannabinoid CB1 receptors mediate the effects of corticotropin-releasing factor on the reinstatement of cocaine seeking and expression of cocaine-induced behavioural sensitization. Br J Pharmacol 167(1):196–206. doi: 10.1111/j.1476-5381.2012.01983.x PubMedPubMedCentralCrossRefGoogle Scholar
  250. Kupferschmidt DA, Newman AE, Boonstra R, Erb S (2012b) Antagonism of cannabinoid 1 receptors reverses the anxiety-like behavior induced by central injections of corticotropin-releasing factor and cocaine withdrawal. Neuroscience 204:125–133. doi: 10.1016/j.neuroscience.2011.07.022 PubMedCrossRefGoogle Scholar
  251. Lacroix L, White I, Feldon J (2002) Effect of excitotoxic lesions of rat medial prefrontal cortex on spatial memory. Behav Brain Res 133(1):69–81PubMedCrossRefGoogle Scholar
  252. Lafenetre P, Chaouloff F, Marsicano G (2007) The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res 56(5):367–381. doi: 10.1016/j.phrs.2007.09.006 PubMedCrossRefGoogle Scholar
  253. Lapiz-Bluhm MD, Bondi CO, Doyen J, Rodriguez GA, Bedard-Arana T, Morilak DA (2008) Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 20(10):1115–1137. doi: 10.1111/j.1365-2826.2008.01772.x PubMedPubMedCentralCrossRefGoogle Scholar
  254. Lauzon NM, Bishop SF, Laviolette SR (2009) Dopamine D1 versus D4 receptors differentially modulate the encoding of salient versus nonsalient emotional information in the medial prefrontal cortex. J Neurosci 29(15):4836–4845. doi: 10.1523/JNEUROSCI.0178-09.2009 PubMedCrossRefGoogle Scholar
  255. Laviolette SR, Grace AA (2006) Cannabinoids potentiate emotional learning plasticity in neurons of the medial prefrontal cortex through basolateral amygdala inputs. J Neurosci 26(24):6458–6468. doi: 10.1523/JNEUROSCI.0707-06.2006 PubMedCrossRefGoogle Scholar
  256. Laviolette SR, Lipski WJ, Grace AA (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J Neurosci 25(26):6066–6075. doi: 10.1523/JNEUROSCI.1168-05.2005 PubMedCrossRefGoogle Scholar
  257. Le Foll B, Goldberg SR (2004) Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. Neuroreport 15(13):2139–2143PubMedCrossRefGoogle Scholar
  258. Le Moal M (2009) Drug abuse: vulnerability and transition to addiction. Pharmacopsychiatry 42(Suppl 1):S42–S55. doi: 10.1055/s-0029-1216355 PubMedCrossRefGoogle Scholar
  259. Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71(1):155–234PubMedGoogle Scholar
  260. Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283(5400):401–404PubMedCrossRefGoogle Scholar
  261. Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2005) Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 30(10):1883–1894. doi: 10.1038/sj.npp.1300722 PubMedCrossRefGoogle Scholar
  262. Lee TT, Filipski SB, Hill MN, McEwen BS (2014) Morphological and behavioral evidence for impaired prefrontal cortical function in female CB1 receptor deficient mice. Behav Brain Res 271:106–110. doi: 10.1016/j.bbr.2014.05.064 PubMedPubMedCentralCrossRefGoogle Scholar
  263. Lesscher HM, Hoogveld E, Burbach JP, van Ree JM, Gerrits MA (2005) Endogenous cannabinoids are not involved in cocaine reinforcement and development of cocaine-induced behavioural sensitization. Eur Neuropsychopharmacol 15(1):31–37. doi: 10.1016/j.euroneuro.2004.04.003 PubMedCrossRefGoogle Scholar
  264. Leweke FM, Giuffrida A, Koethe D, Schreiber D, Nolden BM, Kranaster L, Neatby MA, Schneider M, Gerth CW, Hellmich M, Klosterkotter J, Piomelli D (2007) Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schizophr Res 94(1–3):29–36. doi: 10.1016/j.schres.2007.04.025 PubMedCrossRefGoogle Scholar
  265. Lewis DY, Brett RR (2010) Activity-based anorexia in C57/BL6 mice: effects of the phytocannabinoid, Delta9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur Neuropsychopharmacol 20(9):622–631. doi: 10.1016/j.euroneuro.2010.04.002 PubMedCrossRefGoogle Scholar
  266. Li X, Hoffman AF, Peng XQ, Lupica CR, Gardner EL, Xi ZX (2009) Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology (Berl) 204(1):1–11. doi: 10.1007/s00213-008-1432-0 CrossRefGoogle Scholar
  267. Liang NC, Hajnal A, Norgren R (2006) Sham feeding corn oil increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 291(5):R1236–R1239. doi: 10.1152/ajpregu.00226.2006 PubMedCrossRefGoogle Scholar
  268. Lichtman AH, Sheikh SM, Loh HH, Martin BR (2001) Opioid and cannabinoid modulation of precipitated withdrawal in delta(9)-tetrahydrocannabinol and morphine-dependent mice. J Pharmacol Exp Ther 298(3):1007–1014PubMedGoogle Scholar
  269. Liu QS, Pu L, Poo MM (2005) Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437(7061):1027–1031. doi: 10.1038/nature04050 PubMedPubMedCentralCrossRefGoogle Scholar
  270. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavon FJ, Serrano AM, Selley DE, Parsons LH, Lichtman AH, Cravatt BF (2009a) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5(1):37–44. doi: 10.1038/nchembio.129 PubMedCrossRefGoogle Scholar
  271. Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichtman AH, Wiley JL, Cravatt BF (2009b) Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci USA 106(48):20270–20275. doi: 10.1073/pnas.0909411106 PubMedPubMedCentralCrossRefGoogle Scholar
  272. Lopez HH (2010) Cannabinoid-hormone interactions in the regulation of motivational processes. Horm Behav 58(1):100–110. doi: 10.1016/j.yhbeh.2009.10.005 PubMedCrossRefGoogle Scholar
  273. Lopez-Moreno JA, Gonzalez-Cuevas G, Rodriguez de Fonseca F, Navarro M (2004) Long-lasting increase of alcohol relapse by the cannabinoid receptor agonist WIN 55,212-2 during alcohol deprivation. J Neurosci 24(38):8245–8252. doi: 10.1523/JNEUROSCI.2179-04.2004 PubMedCrossRefGoogle Scholar
  274. Lovinger DM (2008) Presynaptic modulation by endocannabinoids. Handb Exp Pharmacol 184:435–477. doi: 10.1007/978-3-540-74805-2_14 CrossRefGoogle Scholar
  275. Lu HC, Mackie K (2015) An introduction to the endogenous cannabinoid system. Biol Psychiatry. doi: 10.1016/j.biopsych.2015.07.028 PubMedCentralGoogle Scholar
  276. Luchicchi A, Lecca S, Carta S, Pillolla G, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2010) Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict Biol 15(3):277–288. doi: 10.1111/j.1369-1600.2010.00222.x PubMedPubMedCentralCrossRefGoogle Scholar
  277. Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663. doi: 10.1016/j.neuron.2011.01.017 PubMedPubMedCentralCrossRefGoogle Scholar
  278. Lutter M, Nestler EJ (2009) Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr 139(3):629–632. doi: 10.3945/jn.108.097618 PubMedPubMedCentralCrossRefGoogle Scholar
  279. Lutz B (2009) Endocannabinoid signals in the control of emotion. Curr Opin Pharmacol 9(1):46–52. doi: 10.1016/j.coph.2008.12.001 PubMedCrossRefGoogle Scholar
  280. Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T (2014) Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 15(12):786–801. doi: 10.1038/nrn3846 PubMedPubMedCentralCrossRefGoogle Scholar
  281. Macht M, Mueller J (2007) Immediate effects of chocolate on experimentally induced mood states. Appetite 49(3):667–674. doi: 10.1016/j.appet.2007.05.004 PubMedCrossRefGoogle Scholar
  282. Madronal N, Gruart A, Valverde O, Espadas I, Moratalla R, Delgado-Garcia JM (2012) Involvement of cannabinoid CB1 receptor in associative learning and in hippocampal CA3-CA1 synaptic plasticity. Cereb Cortex 22(3):550–566. doi: 10.1093/cercor/bhr103 PubMedCrossRefGoogle Scholar
  283. Mahler SV, Smith KS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32(11):2267–2278. doi: 10.1038/sj.npp.1301376 PubMedCrossRefGoogle Scholar
  284. Malinen H, Hyytia P (2008) Ethanol self-administration is regulated by CB1 receptors in the nucleus accumbens and ventral tegmental area in alcohol-preferring AA rats. Alcohol Clin Exp Res 32(11):1976–1983. doi: 10.1111/j.1530-0277.2008.00786.x PubMedGoogle Scholar
  285. Malinen H, Lehtonen M, Hyytia P (2009) Modulation of brain endocannabinoid levels by voluntary alcohol consumption in alcohol-preferring AA rats. Alcohol Clin Exp Res 33(10):1711–1720. doi: 10.1111/j.1530-0277.2009.01008.x PubMedCrossRefGoogle Scholar
  286. Mallet PE, Beninger RJ (1998) Delta9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance. Life Sci 62(26):2431–2439PubMedCrossRefGoogle Scholar
  287. Mangieri RA, Hong KI, Piomelli D, Sinha R (2009) An endocannabinoid signal associated with desire for alcohol is suppressed in recently abstinent alcoholics. Psychopharmacology (Berl) 205(1):63–72. doi: 10.1007/s00213-009-1518-3 CrossRefGoogle Scholar
  288. Mannucci C, Navarra M, Pieratti A, Russo GA, Caputi AP, Calapai G (2011) Interactions between endocannabinoid and serotonergic systems in mood disorders caused by nicotine withdrawal. Nicotine Tob Res 13(4):239–247. doi: 10.1093/ntr/ntq242 PubMedCrossRefGoogle Scholar
  289. Manzanares J, Corchero J, Fuentes JA (1999) Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats. Brain Res 839(1):173–179PubMedCrossRefGoogle Scholar
  290. Manzanedo C, Aguilar MA, Rodriguez-Arias M, Navarro M, Minarro J (2004) Cannabinoid agonist-induced sensitisation to morphine place preference in mice. Neuroreport 15(8):1373–1377PubMedCrossRefGoogle Scholar
  291. Marco EM, Granstrem O, Moreno E, Llorente R, Adriani W, Laviola G, Viveros MP (2007) Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats. Eur J Pharmacol 557(1):37–43. doi: 10.1016/j.ejphar.2006.11.013 PubMedCrossRefGoogle Scholar
  292. Marco EM, Romero-Zerbo SY, Viveros MP, Bermudez-Silva FJ (2012) The role of the endocannabinoid system in eating disorders: pharmacological implications. Behav Pharmacol 23(5-6):526–536. doi: 10.1097/FBP.0b013e328356c3c9 PubMedCrossRefGoogle Scholar
  293. Markou A (2008) Review. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 363(1507):3159–3168. doi: 10.1098/rstb.2008.0095 PubMedPubMedCentralCrossRefGoogle Scholar
  294. Marsicano G, Lafenetre P (2009) Roles of the endocannabinoid system in learning and memory. Curr Top Behav Neurosci 1:201–230. doi: 10.1007/978-3-540-88955-7_8 PubMedCrossRefGoogle Scholar
  295. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418(6897):530–534. doi: 10.1038/nature00839 PubMedCrossRefGoogle Scholar
  296. Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2000) Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. Eur J Neurosci 12(11):4038–4046PubMedCrossRefGoogle Scholar
  297. Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology 159(4):379–387. doi: 10.1007/s00213-001-0946-5 PubMedCrossRefGoogle Scholar
  298. Martinez-Gonzalez D, Bonilla-Jaime H, Morales-Otal A, Henriksen SJ, Velazquez-Moctezuma J, Prospero-Garcia O (2004) Oleamide and anandamide effects on food intake and sexual behavior of rats. Neurosci Lett 364(1):1–6. doi: 10.1016/j.neulet.2004.03.080 PubMedCrossRefGoogle Scholar
  299. Mascia MS, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A, Fratta W (1999) Lack of morphine-induced dopamine release in the nucleus accumbens of cannabinoid CB(1) receptor knockout mice. Eur J Pharmacol 383(3):R1–R2PubMedCrossRefGoogle Scholar
  300. Mas-Nieto M, Pommier B, Tzavara ET, Caneparo A, Da Nascimento S, Le Fur G, Roques BP, Noble F (2001) Reduction of opioid dependence by the CB(1) antagonist SR141716A in mice: evaluation of the interest in pharmacotherapy of opioid addiction. Br J Pharmacol 132(8):1809–1816. doi: 10.1038/sj.bjp.0703990 PubMedPubMedCentralCrossRefGoogle Scholar
  301. Mathes CM, Ferrara M, Rowland NE (2008) Cannabinoid-1 receptor antagonists reduce caloric intake by decreasing palatable diet selection in a novel dessert protocol in female rats. Am J Physiol Regul Integr Comp Physiol 295(1):R67–R75. doi: 10.1152/ajpregu.00150.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  302. Mato S, Chevaleyre V, Robbe D, Pazos A, Castillo PE, Manzoni OJ (2004) A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci 7(6):585–586. doi: 10.1038/nn1251 PubMedCrossRefGoogle Scholar
  303. Mazzola C, Medalie J, Scherma M, Panlilio LV, Solinas M, Tanda G, Drago F, Cadet JL, Goldberg SR, Yasar S (2009) Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-alpha nuclear receptors. Learn Mem 16(5):332–337. doi: 10.1101/lm.1145209 PubMedPubMedCentralCrossRefGoogle Scholar
  304. McElligott ZA, Winder DG (2009) Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1329–1335. doi: 10.1016/j.pnpbp.2009.05.022 PubMedPubMedCentralCrossRefGoogle Scholar
  305. McGregor IS, Dam KD, Mallet PE, Gallate JE (2005) Delta9-THC reinstates beer- and sucrose-seeking behaviour in abstinent rats: comparison with midazolam, food deprivation and predator odour. Alcohol Alcohol 40(1):35–45. doi: 10.1093/alcalc/agh113 PubMedCrossRefGoogle Scholar
  306. McKinzie DL, Sajdyk TJ, McBride WJ, Murphy JM, Lumeng L, Li TK, Shekhar A (2000) Acoustic startle and fear-potentiated startle in alcohol-preferring (P) and -nonpreferring (NP) lines of rats. Pharmacol Biochem Behav 65(4):691–696PubMedCrossRefGoogle Scholar
  307. McLaughlin RJ, Hill MN, Gorzalka BB (2014) A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior. Neurosci Biobehav Rev 42:116–131. doi: 10.1016/j.neubiorev.2014.02.006 PubMedCrossRefGoogle Scholar
  308. McLellan AT, Lewis DC, O’Brien CP, Kleber HD (2000) Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. JAMA 284(13):1689–1695PubMedCrossRefGoogle Scholar
  309. Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:21–47. doi: 10.1146/annurev-psych-113011-143739 PubMedCrossRefGoogle Scholar
  310. Melis M, Pistis M (2012a) Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. Philos Trans R Soc Lond B Biol Sci 367(1607):3276–3285. doi: 10.1098/rstb.2011.0383 PubMedPubMedCentralCrossRefGoogle Scholar
  311. Melis M, Pistis M (2012b) Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. Philos Trans R Soc Lond B Biol Sci 367(1607):3276–3285. doi: 10.1098/rstb.2011.0383 PubMedPubMedCentralCrossRefGoogle Scholar
  312. Melis M, Pistis M (2014) Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Pharmacol Res 86:42–49. doi: 10.1016/j.phrs.2014.03.009 PubMedCrossRefGoogle Scholar
  313. Melis M, Camarini R, Ungless MA, Bonci A (2002) Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 22(6):2074–2082PubMedGoogle Scholar
  314. Melis T, Succu S, Sanna F, Boi A, Argiolas A, Melis MR (2007) The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett 419(3):231–235. doi: 10.1016/j.neulet.2007.04.012 PubMedCrossRefGoogle Scholar
  315. Mereu M, Tronci V, Chun LE, Thomas AM, Green JL, Katz JL, Tanda G (2013) Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice. Addict Biol 20(4):91–103. doi: 10.1111/adb.12080 PubMedPubMedCentralGoogle Scholar
  316. Merritt LL, Martin BR, Walters C, Lichtman AH, Damaj MI (2008) The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther 326(2):483–492. doi: 10.1124/jpet.108.138321 PubMedPubMedCentralCrossRefGoogle Scholar
  317. Miller WR, Harris RJ (2000) A simple scale of Gorski’s warning signs for relapse. J Stud Alcohol 61(5):759–765PubMedCrossRefGoogle Scholar
  318. Mitrirattanakul S, Lopez-Valdes HE, Liang J, Matsuka Y, Mackie K, Faull KF, Spigelman I (2007) Bidirectional alterations of hippocampal cannabinoid 1 receptors and their endogenous ligands in a rat model of alcohol withdrawal and dependence. Alcohol Clin Exp Res 31(5):855–867. doi: 10.1111/j.1530-0277.2007.00366.x PubMedCrossRefGoogle Scholar
  319. Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V (2005) Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 30(6):1216–1221. doi: 10.1038/sj.npp.1300695 PubMedCrossRefGoogle Scholar
  320. Monteleone P, Tortorella A, Martiadis V, Di Filippo C, Canestrelli B, Maj M (2008) The cDNA 385C to A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) is associated with overweight/obesity but not with binge eating disorder in overweight/obese women. Psychoneuroendocrinology 33(4):546–550. doi: 10.1016/j.psyneuen.2008.01.004 PubMedCrossRefGoogle Scholar
  321. Monteleone P, Bifulco M, Di Filippo C, Gazzerro P, Canestrelli B, Monteleone F, Proto MC, Di Genio M, Grimaldi C, Maj M (2009) Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects. Genes Brain Behav 8(7):728–732. doi: 10.1111/j.1601-183X.2009.00518.x PubMedCrossRefGoogle Scholar
  322. Monteleone P, Piscitelli F, Scognamiglio P, Monteleone AM, Canestrelli B, Di Marzo V, Maj M (2012) Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. J Clin Endocrinol Metab 97(6):E917–E924. doi: 10.1210/jc.2011-3018 PubMedCrossRefGoogle Scholar
  323. Moranta D, Esteban S, Garcia-Sevilla JA (2006) Ethanol desensitizes cannabinoid CB1 receptors modulating monoamine synthesis in the rat brain in vivo. Neurosci Lett 392(1–2):58–61. doi: 10.1016/j.neulet.2005.08.061 PubMedCrossRefGoogle Scholar
  324. Morena M, Patel S, Bains JS, Hill MN (2016) Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 41(1):80–102. doi: 10.1038/npp.2015.166 PubMedCrossRefGoogle Scholar
  325. Morgan CJ, Page E, Schaefer C, Chatten K, Manocha A, Gulati S, Curran HV, Brandner B, Leweke FM (2013) Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br J Psychiatry 202(5):381–382. doi: 10.1192/bjp.bp.112.121178 PubMedCrossRefGoogle Scholar
  326. Muhl D, Kathmann M, Hoyer C, Kranaster L, Hellmich M, Gerth CW, Faulhaber J, Schlicker E, Leweke FM (2014) Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse. Naunyn Schmiedebergs Arch Pharmacol 387(7):691–695. doi: 10.1007/s00210-014-0984-2 PubMedCrossRefGoogle Scholar
  327. Muldoon PP, Lichtman AH, Parsons LH, Damaj MI (2013) The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence. Life Sci 92(8–9):458–462. doi: 10.1016/j.lfs.2012.05.015 PubMedCrossRefGoogle Scholar
  328. Muldoon PP, Chen J, Harenza JL, Abdullah RA, Sim-Selley LJ, Cravatt BF, Miles MF, Chen X, Lichtman AH, Damaj MI (2015) Inhibition of monoacylglycerol lipase reduces nicotine withdrawal. Br J Pharmacol 172(3):869–882. doi: 10.1111/bph.12948 PubMedPubMedCentralCrossRefGoogle Scholar
  329. Muller TD, Reichwald K, Bronner G, Kirschner J, Nguyen TT, Scherag A, Herzog W, Herpertz-Dahlmann B, Lichtner P, Meitinger T, Platzer M, Schafer H, Hebebrand J, Hinney A (2008) Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa. Child Adolesc Psychiatr Ment Health 2(1):33. doi: 10.1186/1753-2000-2-33 CrossRefGoogle Scholar
  330. Murillo-Rodriguez E, Poot-Ake A, Arias-Carrion O, Pacheco-Pantoja E, Fuente-Ortegon Ade L, Arankowsky-Sandoval G (2011) The emerging role of the endocannabinoid system in the sleep-wake cycle modulation. Cent Nerv Syst Agents Med Chem 11(3):189–196PubMedCrossRefGoogle Scholar
  331. Murillo-Rodriguez E, Palomero-Rivero M, Millan-Aldaco D, Di Marzo V (2013) The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. Physiol Behav 109:88–95. doi: 10.1016/j.physbeh.2012.11.007 PubMedCrossRefGoogle Scholar
  332. Murray JB (2002) Phencyclidine (PCP): a dangerous drug, but useful in schizophrenia research. J Psychol 136(3):319–327. doi: 10.1080/00223980209604159 PubMedCrossRefGoogle Scholar
  333. Naassila M, Pierrefiche O, Ledent C, Daoust M (2004) Decreased alcohol self-administration and increased alcohol sensitivity and withdrawal in CB1 receptor knockout mice. Neuropharmacology 46(2):243–253PubMedCrossRefGoogle Scholar
  334. Natividad LA, Buczynski MW, Herman MA, Kirson D, Oleata CS, Irimia C, Polis I, Ciccocioppo R, Roberto M, Parsons LH (2017) Constitutive increases in amygdalar corticotropin-releasing factor and fatty acid amide hydrolase drive an anxious phenotype. Biol Psychiatry. doi: 10.1016/j.biopsych.2017.01.005 PubMedGoogle Scholar
  335. Navarrete F, Rodriguez-Arias M, Martin-Garcia E, Navarro D, Garcia-Gutierrez MS, Aguilar MA, Aracil-Fernandez A, Berbel P, Minarro J, Maldonado R, Manzanares J (2013) Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology 38(12):2515–2524. doi: 10.1038/npp.2013.157 PubMedPubMedCentralCrossRefGoogle Scholar
  336. Navarro M, Carrera MR, Fratta W, Valverde O, Cossu G, Fattore L, Chowen JA, Gomez R, del Arco I, Villanua MA, Maldonado R, Koob GF, Rodriguez de Fonseca F (2001) Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci 21(14):5344–5350PubMedGoogle Scholar
  337. Nawata Y, Hiranita T, Yamamoto T (2010) A cannabinoid CB(1) receptor antagonist ameliorates impairment of recognition memory on withdrawal from MDMA (Ecstasy). Neuropsychopharmacology 35(2):515–520. doi: 10.1038/npp.2009.158 PubMedCrossRefGoogle Scholar
  338. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8(11):1445–1449. doi: 10.1038/nn1578 PubMedCrossRefGoogle Scholar
  339. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76(Pt B):259–268. doi: 10.1016/j.neuropharm.2013.04.004
  340. Neumeister A, Normandin MD, Murrough JW, Henry S, Bailey CR, Luckenbaugh DA, Tuit K, Zheng MQ, Galatzer-Levy IR, Sinha R, Carson RE, Potenza MN, Huang Y (2012) Positron emission tomography shows elevated cannabinoid CB1 receptor binding in men with alcohol dependence. Alcohol Clin Exp Res 36(12):2104–2109. doi: 10.1111/j.1530-0277.2012.01815.x PubMedPubMedCentralCrossRefGoogle Scholar
  341. Niehaus JL, Murali M, Kauer JA (2010) Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur J Neurosci 32(1):108–117. doi: 10.1111/j.1460-9568.2010.07256.x PubMedPubMedCentralCrossRefGoogle Scholar
  342. Niphakis MJ, Johnson DS, Ballard TE, Stiff C, Cravatt BF (2012) O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem Neurosci 3(5):418–426. doi: 10.1021/cn200089j PubMedCrossRefGoogle Scholar
  343. Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH (2007) The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology 191(2):223–231. doi: 10.1007/s00213-006-0650-6 PubMedPubMedCentralCrossRefGoogle Scholar
  344. Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446(7139):1086–1090. doi: 10.1038/nature05726 PubMedCrossRefGoogle Scholar
  345. Nunes EV, Levin FR (2004) Treatment of depression in patients with alcohol or other drug dependence: a meta-analysis. JAMA 291(15):1887–1896. doi: 10.1001/jama.291.15.1887 PubMedCrossRefGoogle Scholar
  346. Nunes EV, Sullivan MA, Levin FR (2004) Treatment of depression in patients with opiate dependence. Biol Psychiatry 56(10):793–802. doi: 10.1016/j.biopsych.2004.06.037 PubMedCrossRefGoogle Scholar
  347. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427PubMedCrossRefGoogle Scholar
  348. Palomino A, Pavon FJ, Blanco-Calvo E, Serrano A, Arrabal S, Rivera P, Alen F, Vargas A, Bilbao A, Rubio L, Rodriguez de Fonseca F, Suarez J (2014) Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum. Front Integr Neurosci 8:22. doi: 10.3389/fnint.2014.00022 PubMedPubMedCentralCrossRefGoogle Scholar
  349. Pamplona FA, Prediger RD, Pandolfo P, Takahashi RN (2006) The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology 188(4):641–649. doi: 10.1007/s00213-006-0514-0 PubMedCrossRefGoogle Scholar
  350. Pamplona FA, Bitencourt RM, Takahashi RN (2008) Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol Learn Mem 90(1):290–293. doi: 10.1016/j.nlm.2008.04.003 PubMedCrossRefGoogle Scholar
  351. Pan B, Hillard CJ, Liu QS (2008) Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J Neurosci 28(6):1385–1397. doi: 10.1523/JNEUROSCI.4033-07.2008 PubMedCrossRefGoogle Scholar
  352. Panagis G, Mackey B, Vlachou S (2014) Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future. Front Psychiatry 5:92. doi: 10.3389/fpsyt.2014.00092 PubMedPubMedCentralCrossRefGoogle Scholar
  353. Pani PP, Maremmani I, Trogu E, Gessa GL, Ruiz P, Akiskal HS (2010) Delineating the psychic structure of substance abuse and addictions: should anxiety, mood and impulse-control dysregulation be included? J Affect Disord 122(3):185–197. doi: 10.1016/j.jad.2009.06.012 PubMedCrossRefGoogle Scholar
  354. Parylak SL, Koob GF, Zorrilla EP (2011) The dark side of food addiction. Physiol Behav 104(1):149–156. doi: 10.1016/j.physbeh.2011.04.063 PubMedPubMedCentralCrossRefGoogle Scholar
  355. Pataky Z, Gasteyger C, Ziegler O, Rissanen A, Hanotin C, Golay A (2013) Efficacy of rimonabant in obese patients with binge eating disorder. Exp Clin Endocrinol Diabetes 121(1):20–26. doi: 10.1055/s-0032-1329957 PubMedGoogle Scholar
  356. Patel S, Rademacher DJ, Hillard CJ (2003) Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther 306(3):880–888. doi: 10.1124/jpet.103.054270 PubMedCrossRefGoogle Scholar
  357. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145(12):5431–5438. doi: 10.1210/en.2004-0638 PubMedCrossRefGoogle Scholar
  358. Patel S, Cravatt BF, Hillard CJ (2005) Synergistic interactions between cannabinoids and environmental stress in the activation of the central amygdala. Neuropsychopharmacology 30(3):497–507. doi: 10.1038/sj.npp.1300535 PubMedCrossRefGoogle Scholar
  359. Patel S, Kingsley PJ, Mackie K, Marnett LJ, Winder DG (2009) Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 34(13):2699–2709. doi: 10.1038/npp.2009.101 PubMedPubMedCentralCrossRefGoogle Scholar
  360. Pava MJ, Woodward JJ (2014) Chronic ethanol alters network activity and endocannabinoid signaling in the prefrontal cortex. Front Integr Neurosci 8:58. doi: 10.3389/fnint.2014.00058 PubMedPubMedCentralCrossRefGoogle Scholar
  361. Pavon FJ, Araos P, Pastor A, Calado M, Pedraz M, Campos-Cloute R, Ruiz JJ, Serrano A, Blanco E, Rivera P, Suarez J, Romero-Cuevas M, Pujadas M, Vergara-Moragues E, Gornemann I, Torrens M, de la Torre R, Rodriguez de Fonseca F (2013) Evaluation of plasma-free endocannabinoids and their congeners in abstinent cocaine addicts seeking outpatient treatment: impact of psychiatric co-morbidity. Addict Biol 18(6):955–969. doi: 10.1111/adb.12107 PubMedCrossRefGoogle Scholar
  362. Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL, Pistis M (2005) Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo. Psychopharmacology (Berl) 183(3):368–377. doi: 10.1007/s00213-005-0195-0 CrossRefGoogle Scholar
  363. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84(2):167–173CrossRefGoogle Scholar
  364. Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB (2003a) Smoking withdrawal dynamics: I. Abstinence distress in lapsers and abstainers. J Abnorm Psychol 112(1):3–13PubMedCrossRefGoogle Scholar
  365. Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB (2003b) Smoking withdrawal dynamics: II. Improved tests of withdrawal-relapse relations. J Abnorm Psychol 112(1):14–27PubMedCrossRefGoogle Scholar
  366. Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB (2003c) Smoking withdrawal dynamics: III. Correlates of withdrawal heterogeneity. Exp Clin Psychopharmacol 11(4):276–285. doi: 10.1037/1064-1297.11.4.276 PubMedCrossRefGoogle Scholar
  367. Piazza PV, Le Moal M (1998) The role of stress in drug self-administration. Trends Pharmacol Sci 19(2):67–74PubMedCrossRefGoogle Scholar
  368. Piper ME, Cook JW, Schlam TR, Jorenby DE, Baker TB (2011) Anxiety diagnoses in smokers seeking cessation treatment: relations with tobacco dependence, withdrawal, outcome and response to treatment. Addiction 106(2):418–427. doi: 10.1111/j.1360-0443.2010.03173.x PubMedCrossRefGoogle Scholar
  369. Platt DM, Rowlett JK, Spealman RD (2001) Discriminative stimulus effects of intravenous heroin and its metabolites in rhesus monkeys: opioid and dopaminergic mechanisms. J Pharmacol Exp Ther 299(2):760–767PubMedGoogle Scholar
  370. Powers MS, Barrenha GD, Mlinac NS, Barker EL, Chester JA (2010) Effects of the novel endocannabinoid uptake inhibitor, LY2183240, on fear-potentiated startle and alcohol-seeking behaviors in mice selectively bred for high alcohol preference. Psychopharmacology (Berl) 212(4):571–583. doi: 10.1007/s00213-010-1997-2 CrossRefGoogle Scholar
  371. Puighermanal E, Busquets-Garcia A, Maldonado R, Ozaita A (2012) Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Philos Trans R Soc Lond B Biol Sci 367(1607):3254–3263. doi: 10.1098/rstb.2011.0384 PubMedPubMedCentralCrossRefGoogle Scholar
  372. Quirk GJ, Gehlert DR (2003) Inhibition of the amygdala: key to pathological states? Ann NY Acad Sci 985:263–272PubMedCrossRefGoogle Scholar
  373. Rada P, Avena NM, Hoebel BG (2005) Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134(3):737–744. doi: 10.1016/j.neuroscience.2005.04.043 PubMedCrossRefGoogle Scholar
  374. Rademacher DJ, Hillard CJ (2007) Interactions between endocannabinoids and stress-induced decreased sensitivity to natural reward. Prog Neuropsychopharmacol Biol Psychiatry 31(3):633–641. doi: 10.1016/j.pnpbp.2006.12.013 PubMedCrossRefGoogle Scholar
  375. Raichlen DA, Foster AD, Seillier A, Giuffrida A, Gerdeman GL (2013) Exercise-induced endocannabinoid signaling is modulated by intensity. Eur J Appl Physiol 113(4):869–875. doi: 10.1007/s00421-012-2495-5 PubMedCrossRefGoogle Scholar
  376. Ramesh D, Ross GR, Schlosburg JE, Owens RA, Abdullah RA, Kinsey SG, Long JZ, Nomura DK, Sim-Selley LJ, Cravatt BF, Akbarali HI, Lichtman AH (2011) Blockade of endocannabinoid hydrolytic enzymes attenuates precipitated opioid withdrawal symptoms in mice. J Pharmacol Exp Ther 339(1):173–185. doi: 10.1124/jpet.111.181370 PubMedPubMedCentralCrossRefGoogle Scholar
  377. Ramesh D, Gamage TF, Vanuytsel T, Owens RA, Abdullah RA, Niphakis MJ, Shea-Donohue T, Cravatt BF, Lichtman AH (2013) Dual inhibition of endocannabinoid catabolic enzymes produces enhanced antiwithdrawal effects in morphine-dependent mice. Neuropsychopharmacology 38(6):1039–1049. doi: 10.1038/npp.2012.269 PubMedPubMedCentralCrossRefGoogle Scholar
  378. Reisiger AR, Kaufling J, Manzoni O, Cador M, Georges F, Caille S (2014) Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis. J Neurosci 34(12):4285–4292. doi: 10.1523/JNEUROSCI.3149-13.2014 PubMedCrossRefGoogle Scholar
  379. Rescorla RA (1996) Preservation of Pavlovian associations through extinction. Q J Exp Psychol B Comp Physiol Psychol 49(3):245–258Google Scholar
  380. Richman JA, Flaherty JA, Rospenda KM (1996) Perceived workplace harassment experiences and problem drinking among physicians: broadening the stress/alienation paradigm. Addiction 91(3):391–403PubMedCrossRefGoogle Scholar
  381. Rivera P, Miguens M, Coria SM, Rubio L, Higuera-Matas A, Bermudez-Silva FJ, de Fonseca FR, Suarez J, Ambrosio E (2013) Cocaine self-administration differentially modulates the expression of endogenous cannabinoid system-related proteins in the hippocampus of Lewis vs. Fischer 344 rats. Int J Neuropsychopharmacol 16(6):1277–1293. doi: 10.1017/S1461145712001186 PubMedCrossRefGoogle Scholar
  382. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain research Brain research reviews 18(3):247–291PubMedCrossRefGoogle Scholar
  383. Rose JE, Salley A, Behm FM, Bates JE, Westman EC (2010) Reinforcing effects of nicotine and non-nicotine components of cigarette smoke. Psychopharmacology 210(1):1–12. doi: 10.1007/s00213-010-1810-2 PubMedPubMedCentralCrossRefGoogle Scholar
  384. Rospenda KM, Richman JA, Wislar JS, Flaherty JA (2000) Chronicity of sexual harassment and generalized work-place abuse: effects on drinking outcomes. Addiction 95(12):1805–1820. doi: 10.1080/09652140020011117 PubMedCrossRefGoogle Scholar
  385. Rouge-Pont F, Marinelli M, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine induced by cocaine depends on stress-induced corticosterone secretion. J Neurosci 15(11):7189–7195PubMedGoogle Scholar
  386. Rouge-Pont F, Deroche V, Le Moal M, Piazza PV (1998) Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur J Neurosci 10(12):3903–3907PubMedCrossRefGoogle Scholar
  387. Rubino T, Tizzoni L, Vigano D, Massi P, Parolaro D (1997) Modulation of rat brain cannabinoid receptors after chronic morphine treatment. Neuroreport 8(15):3219–3223PubMedCrossRefGoogle Scholar
  388. Rubino T, Massi P, Vigano D, Fuzio D, Parolaro D (2000) Long-term treatment with SR141716A, the CB1 receptor antagonist, influences morphine withdrawal syndrome. Life Sci 66(22):2213–2219PubMedCrossRefGoogle Scholar
  389. Rubio M, McHugh D, Fernandez-Ruiz J, Bradshaw H, Walker JM (2007) Short-term exposure to alcohol in rats affects brain levels of anandamide, other N-acylethanolamines and 2-arachidonoyl-glycerol. Neurosci Lett 421(3):270–274. doi: 10.1016/j.neulet.2007.05.052 PubMedPubMedCentralCrossRefGoogle Scholar
  390. Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37(4):577–582PubMedCrossRefGoogle Scholar
  391. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191(3):461–482. doi: 10.1007/s00213-006-0668-9 PubMedCrossRefGoogle Scholar
  392. Saravia R, Flores A, Plaza-Zabala A, Busquets-Garcia A, Pastor A, de la Torre R, Di Marzo V, Marsicano G, Ozaita A, Maldonado R, Berrendero F (2016) cb1 cannabinoid receptors mediate cognitive deficits and structural plasticity changes during nicotine withdrawal. Biol Psychiatry. doi: 10.1016/j.biopsych.2016.07.007 PubMedGoogle Scholar
  393. Scherma M, Panlilio LV, Fadda P, Fattore L, Gamaleddin I, Le Foll B, Justinova Z, Mikics E, Haller J, Medalie J, Stroik J, Barnes C, Yasar S, Tanda G, Piomelli D, Fratta W, Goldberg SR (2008) Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J Pharmacol Exp Ther 327 (2):482–490. doi: 10.1124/jpet.108.142224
  394. Scherma M, Justinova Z, Zanettini C, Panlilio LV, Mascia P, Fadda P, Fratta W, Makriyannis A, Vadivel SK, Gamaleddin I, Le Foll B, Goldberg SR (2012) The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol 165(8):2539–2548. doi: 10.1111/j.1476-5381.2011.01467.x PubMedPubMedCentralCrossRefGoogle Scholar
  395. Scherma M, Fattore L, Satta V, Businco F, Pigliacampo B, Goldberg SR, Dessi C, Fratta W, Fadda P (2013) Pharmacological modulation of the endocannabinoid signalling alters binge-type eating behaviour in female rats. Br J Pharmacol 169(4):820–833. doi: 10.1111/bph.12014 PubMedPubMedCentralCrossRefGoogle Scholar
  396. Scherma M, Fattore L, Castelli MP, Fratta W, Fadda P (2014) The role of the endocannabinoid system in eating disorders: neurochemical and behavioural preclinical evidence. Curr Pharm Des 20(13):2089–2099PubMedCrossRefGoogle Scholar
  397. Schindler CW, Scherma M, Redhi GH, Vadivel SK, Makriyannis A, Goldberg SR, Justinova Z (2016) Self-administration of the anandamide transport inhibitor AM404 by squirrel monkeys. Psychopharmacology. doi: 10.1007/s00213-016-4211-3 Google Scholar
  398. Schlosburg JE, Carlson BL, Ramesh D, Abdullah RA, Long JZ, Cravatt BF, Lichtman AH (2009) Inhibitors of endocannabinoid-metabolizing enzymes reduce precipitated withdrawal responses in THC-dependent mice. AAPS J 11(2):342–352. doi: 10.1208/s12248-009-9110-7 PubMedPubMedCentralCrossRefGoogle Scholar
  399. Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, Thomas EA, Selley DE, Sim-Selley LJ, Liu QS, Lichtman AH, Cravatt BF (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13(9):1113–1119. doi: 10.1038/nn.2616 PubMedPubMedCentralCrossRefGoogle Scholar
  400. Schmidt LG, Samochowiec J, Finckh U, Fiszer-Piosik E, Horodnicki J, Wendel B, Rommelspacher H, Hoehe MR (2002) Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence. Drug Alcohol Depend 65(3):221–224PubMedCrossRefGoogle Scholar
  401. Schuckit MA (2006) Comorbidity between substance use disorders and psychiatric conditions. Addiction 101(Suppl 1):76–88. doi: 10.1111/j.1360-0443.2006.01592.x PubMedCrossRefGoogle Scholar
  402. Sclafani A, Bodnar RJ, Delamater AR (1998) Pharmacology of food conditioned preferences. Appetite 31(3):406. doi: 10.1006/appe.1998.0211 PubMedCrossRefGoogle Scholar
  403. Seillier A, Giuffrida A (2009) Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 204(2):410–415. doi: 10.1016/j.bbr.2009.02.007 PubMedCrossRefGoogle Scholar
  404. Seillier A, Martinez AA, Giuffrida A (2013) Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB(1) receptors: implications for schizophrenia. Neuropsychopharmacology 38(9):1816–1824. doi: 10.1038/npp.2013.81 PubMedPubMedCentralCrossRefGoogle Scholar
  405. Serrano A, Rivera P, Pavon FJ, Decara J, Suarez J, Rodriguez de Fonseca F, Parsons LH (2012) Differential effects of single versus repeated alcohol withdrawal on the expression of endocannabinoid system-related genes in the rat amygdala. Alcohol Clin Exp Res 36(6):984–994. doi: 10.1111/j.1530-0277.2011.01686.x PubMedCrossRefGoogle Scholar
  406. Shinohara Y, Inui T, Yamamoto T, Shimura T (2009) Cannabinoid in the nucleus accumbens enhances the intake of palatable solution. Neuroreport 20(15):1382–1385. doi: 10.1097/WNR.0b013e3283318010 PubMedCrossRefGoogle Scholar
  407. Shippenberg TS, Elmer GI (1998) The neurobiology of opiate reinforcement. Crit Rev Neurobiol 12(4):267–303PubMedCrossRefGoogle Scholar
  408. Shoaib M (2008) The cannabinoid antagonist AM251 attenuates nicotine self-administration and nicotine-seeking behaviour in rats. Neuropharmacology 54(2):438–444. doi: 10.1016/j.neuropharm.2007.10.011 PubMedCrossRefGoogle Scholar
  409. Sidhpura N, Parsons LH (2011) Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61(7):1070–1087. doi: 10.1016/j.neuropharm.2011.05.034 PubMedPubMedCentralCrossRefGoogle Scholar
  410. Siegfried Z, Kanyas K, Latzer Y, Karni O, Bloch M, Lerer B, Berry EM (2004) Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am J Med Genet B Neuropsychiatr Genet 125B(1):126–130. doi: 10.1002/ajmg.b.20089 PubMedCrossRefGoogle Scholar
  411. Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17(4):475–490. doi: 10.1016/j.cmet.2013.03.001 PubMedCrossRefGoogle Scholar
  412. Sim LJ, Hampson RE, Deadwyler SA, Childers SR (1996) Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 16(24):8057–8066PubMedGoogle Scholar
  413. Simiand J, Keane M, Keane PE, Soubrie P (1998) SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol 9(2):179–181PubMedGoogle Scholar
  414. Simonnet A, Cador M, Caille S (2013) Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area. Addict Biol 18(6):930–936. doi: 10.1111/j.1369-1600.2012.00476.x PubMedCrossRefGoogle Scholar
  415. Singh ME, Verty AN, McGregor IS, Mallet PE (2004) A cannabinoid receptor antagonist attenuates conditioned place preference but not behavioural sensitization to morphine. Brain Res 1026(2):244–253. doi: 10.1016/j.brainres.2004.08.027 PubMedCrossRefGoogle Scholar
  416. Sipe JC, Waalen J, Gerber A, Beutler E (2005) Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int J Obes (Lond) 29(7):755–759. doi: 10.1038/sj.ijo.0802954 CrossRefGoogle Scholar
  417. Smith PA, Selley DE, Sim-Selley LJ, Welch SP (2007) Low dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors. Eur J Pharmacol 571(2-3):129–137. doi: 10.1016/j.ejphar.2007.06.001 PubMedPubMedCentralCrossRefGoogle Scholar
  418. Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30(11):2035–2045. doi: 10.1038/sj.npp.1300720 PubMedCrossRefGoogle Scholar
  419. Solinas M, Panlilio LV, Antoniou K, Pappas LA, Goldberg SR (2003) The cannabinoid CB1 antagonist N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl) -4-methylpyrazole-3-carboxamide (SR-141716A) differentially alters the reinforcing effects of heroin under continuous reinforcement, fixed ratio, and progressive ratio schedules of drug self-administration in rats. J Pharmacol Exp Ther 306(1):93–102. doi: 10.1124/jpet.102.047928 PubMedCrossRefGoogle Scholar
  420. Solinas M, Panlilio LV, Tanda G, Makriyannis A, Matthews SA, Goldberg SR (2005) Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology 30(11):2046–2057. doi: 10.1038/sj.npp.1300754 PubMedCrossRefGoogle Scholar
  421. Solinas M, Justinova Z, Goldberg SR, Tanda G (2006) Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J Neurochem 98(2):408–419. doi: 10.1111/j.1471-4159.2006.03880.x PubMedCrossRefGoogle Scholar
  422. Solinas M, Tanda G, Justinova Z, Wertheim CE, Yasar S, Piomelli D, Vadivel SK, Makriyannis A, Goldberg SR (2007) The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. J Pharmacol Exp Ther 321(1):370–380. doi: 10.1124/jpet.106.114124 PubMedCrossRefGoogle Scholar
  423. Soria G, Mendizabal V, Tourino C, Robledo P, Ledent C, Parmentier M, Maldonado R, Valverde O (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30(9):1670–1680. doi: 10.1038/sj.npp.1300707 PubMedCrossRefGoogle Scholar
  424. Soria-Gomez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospero-Garcia O (2007) Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol 151(7):1109–1116. doi: 10.1038/sj.bjp.0707313 PubMedPubMedCentralCrossRefGoogle Scholar
  425. South T, Deng C, Huang XF (2007) AM 251 and beta-Funaltrexamine reduce fat intake in a fat-preferring strain of mouse. Behav Brain Res 181(1):153–157. doi: 10.1016/j.bbr.2007.03.028 PubMedCrossRefGoogle Scholar
  426. Spano MS, Fattore L, Cossu G, Deiana S, Fadda P, Fratta W (2004) CB1 receptor agonist and heroin, but not cocaine, reinstate cannabinoid-seeking behaviour in the rat. Br J Pharmacol 143(3):343–350. doi: 10.1038/sj.bjp.0705932 PubMedPubMedCentralCrossRefGoogle Scholar
  427. Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. Neuroreport 14(17):2209–2211. doi: 10.1097/01.wnr.0000097048.56589.47 PubMedCrossRefGoogle Scholar
  428. Stewart SH, Kushner MG (2001) Introduction to the special issue on “Anxiety sensitivity and addictive behaviors”. Addict Behav 26(6):775–785PubMedCrossRefGoogle Scholar
  429. Stoving RK, Andries A, Brixen K, Flyvbjerg A, Horder K, Frystyk J (2009) Leptin, ghrelin, and endocannabinoids: potential therapeutic targets in anorexia nervosa. J Psychiatr Res 43(7):671–679. doi: 10.1016/j.jpsychires.2008.09.007 PubMedCrossRefGoogle Scholar
  430. Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR (2011) Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 21(12):2665–2680. doi: 10.1093/cercor/bhr031 PubMedCrossRefGoogle Scholar
  431. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24(20):4787–4795. doi: 10.1523/JNEUROSCI.5491-03.2004 PubMedCrossRefGoogle Scholar
  432. Tabibnia G, Lieberman MD (2007) Fairness and cooperation are rewarding: evidence from social cognitive neuroscience. Ann NY Acad Sci 1118:90–101. doi: 10.1196/annals.1412.001 PubMedCrossRefGoogle Scholar
  433. Tan H, Lauzon NM, Bishop SF, Bechard MA, Laviolette SR (2010) Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding. Cereb Cortex 20(6):1486–1496. doi: 10.1093/cercor/bhp210 PubMedCrossRefGoogle Scholar
  434. Tan H, Ahmad T, Loureiro M, Zunder J, Laviolette SR (2014) The role of cannabinoid transmission in emotional memory formation: implications for addiction and schizophrenia. Front Psychiatry 5:73. doi: 10.3389/fpsyt.2014.00073 PubMedPubMedCentralGoogle Scholar
  435. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276(5321):2048–2050PubMedCrossRefGoogle Scholar
  436. Tanda G, Munzar P, Goldberg SR (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci 3(11):1073–1074. doi: 10.1038/80577 PubMedCrossRefGoogle Scholar
  437. Thanos PK, Dimitrakakis ES, Rice O, Gifford A, Volkow ND (2005) Ethanol self-administration and ethanol conditioned place preference are reduced in mice lacking cannabinoid CB1 receptors. Behav Brain Res 164(2):206–213. doi: 10.1016/j.bbr.2005.06.021 PubMedCrossRefGoogle Scholar
  438. Tidey JW, Miczek KA (1997) Acquisition of cocaine self-administration after social stress: role of accumbens dopamine. Psychopharmacology 130(3):203–212PubMedCrossRefGoogle Scholar
  439. Tomasi D, Volkow ND (2013) Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol 48(1):1–19. doi: 10.3109/10409238.2012.735642 PubMedCrossRefGoogle Scholar
  440. Trezza V, Vanderschuren LJ (2008a) Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology (Berl) 197(2):217–227. doi: 10.1007/s00213-007-1025-3 CrossRefGoogle Scholar
  441. Trezza V, Vanderschuren LJ (2008b) Cannabinoid and opioid modulation of social play behavior in adolescent rats: differential behavioral mechanisms. Eur Neuropsychopharmacol 18(7):519–530. doi: 10.1016/j.euroneuro.2008.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  442. Trezza V, Vanderschuren LJ (2009) Divergent effects of anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. J Pharmacol Exp Ther 328(1):343–350. doi: 10.1124/jpet.108.141069 PubMedCrossRefGoogle Scholar
  443. Trezza V, Baarendse PJ, Vanderschuren LJ (2010) The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol Sci 31(10):463–469. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  444. Umberg EN, Pothos EN (2011) Neurobiology of aversive states. Physiol Behav 104(1):69–75. doi: 10.1016/j.physbeh.2011.04.045 PubMedPubMedCentralCrossRefGoogle Scholar
  445. Uriguen L, Perez-Rial S, Ledent C, Palomo T, Manzanares J (2004) Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46(7):966–973. doi: 10.1016/j.neuropharm.2004.01.003 PubMedCrossRefGoogle Scholar
  446. Valjent E, Mitchell JM, Besson MJ, Caboche J, Maldonado R (2002) Behavioural and biochemical evidence for interactions between delta 9-tetrahydrocannabinol and nicotine. Br J Pharmacol 135(2):564–578. doi: 10.1038/sj.bjp.0704479 PubMedPubMedCentralCrossRefGoogle Scholar
  447. van der Stelt M, Mazzola C, Esposito G, Matias I, Petrosino S, De Filippis D, Micale V, Steardo L, Drago F, Iuvone T, Di Marzo V (2006) Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 63(12):1410–1424. doi: 10.1007/s00018-006-6037-3 PubMedCrossRefGoogle Scholar
  448. Vann RE, Warner JA, Bushell K, Huffman JW, Martin BR, Wiley JL (2009) Discriminative stimulus properties of delta9-tetrahydrocannabinol (THC) in C57Bl/6J mice. Eur J Pharmacol 615(1-3):102–107. doi: 10.1016/j.ejphar.2009.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  449. Varvel SA, Lichtman AH (2002) Evaluation of CB1 receptor knockout mice in the Morris water maze. J Pharmacol Exp Ther 301(3):915–924PubMedCrossRefGoogle Scholar
  450. Varvel SA, Anum EA, Lichtman AH (2005) Disruption of CB(1) receptor signaling impairs extinction of spatial memory in mice. Psychopharmacology 179(4):863–872. doi: 10.1007/s00213-004-2121-2 PubMedCrossRefGoogle Scholar
  451. Varvel SA, Wise LE, Niyuhire F, Cravatt BF, Lichtman AH (2007) Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 32(5):1032–1041. doi: 10.1038/sj.npp.1301224 PubMedCrossRefGoogle Scholar
  452. Vaseghi G, Rabbani M, Hajhashemi V (2012) The CB(1) receptor antagonist, AM281, improves recognition loss induced by naloxone in morphine withdrawal mice. Basic Clin Pharmacol Toxicol 111(3):161–165. doi: 10.1111/j.1742-7843.2012.00881.x PubMedGoogle Scholar
  453. Vaseghi G, Rabbani M, Hajhashemi V (2013) The effect of AM281, a cannabinoid antagonist, on memory performance during spontaneous morphine withdrawal in mice. Res Pharm Sci 8(1):59–64PubMedPubMedCentralGoogle Scholar
  454. Vaughn LK, Mantsch JR, Vranjkovic O, Stroh G, Lacourt M, Kreutter M, Hillard CJ (2012) Cannabinoid receptor involvement in stress-induced cocaine reinstatement: potential interaction with noradrenergic pathways. Neuroscience 204:117–124. doi: 10.1016/j.neuroscience.2011.08.021 PubMedCrossRefGoogle Scholar
  455. Vela G, Ruiz-Gayo M, Fuentes JA (1995) Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. Neuropharmacology 34(6):665–668PubMedCrossRefGoogle Scholar
  456. Vengeliene V, Siegmund S, Singer MV, Sinclair JD, Li TK, Spanagel R (2003) A comparative study on alcohol-preferring rat lines: effects of deprivation and stress phases on voluntary alcohol intake. Alcohol Clin Exp Res 27(7):1048–1054. doi: 10.1097/01.ALC.0000075829.81211.0C PubMedCrossRefGoogle Scholar
  457. Verty AN, McGregor IS, Mallet PE (2005) Paraventricular hypothalamic CB(1) cannabinoid receptors are involved in the feeding stimulatory effects of Delta(9)-tetrahydrocannabinol. Neuropharmacology 49(8):1101–1109. doi: 10.1016/j.neuropharm.2005.03.025 PubMedCrossRefGoogle Scholar
  458. Vigano D, Grazia Cascio M, Rubino T, Fezza F, Vaccani A, Di Marzo V, Parolaro D (2003) Chronic morphine modulates the contents of the endocannabinoid, 2-arachidonoyl glycerol, in rat brain. Neuropsychopharmacology 28(6):1160–1167. doi: 10.1038/sj.npp.1300117 PubMedGoogle Scholar
  459. Vigano D, Valenti M, Cascio MG, Di Marzo V, Parolaro D, Rubino T (2004) Changes in endocannabinoid levels in a rat model of behavioural sensitization to morphine. Eur J Neurosci 20(7):1849–1857. doi: 10.1111/j.1460-9568.2004.03645.x PubMedCrossRefGoogle Scholar
  460. Vinklerova J, Novakova J, Sulcova A (2002) Inhibition of methamphetamine self-administration in rats by cannabinoid receptor antagonist AM251. J Psychopharmacol 16(2):139–143PubMedCrossRefGoogle Scholar
  461. Vinod KY, Yalamanchili R, Xie S, Cooper TB, Hungund BL (2006) Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. Neurochem Int 49(6):619–625. doi: 10.1016/j.neuint.2006.05.002 PubMedCrossRefGoogle Scholar
  462. Vinod KY, Sanguino E, Yalamanchili R, Manzanares J, Hungund BL (2008) Manipulation of fatty acid amide hydrolase functional activity alters sensitivity and dependence to ethanol. J Neurochem 104(1):233–243. doi: 10.1111/j.1471-4159.2007.04956.x PubMedGoogle Scholar
  463. Vinod KY, Kassir SA, Hungund BL, Cooper TB, Mann JJ, Arango V (2010) Selective alterations of the CB1 receptors and the fatty acid amide hydrolase in the ventral striatum of alcoholics and suicides. J Psychiatr Res 44(9):591–597. doi: 10.1016/j.jpsychires.2009.11.013 PubMedCrossRefGoogle Scholar
  464. Vinod KY, Maccioni P, Garcia-Gutierrez MS, Femenia T, Xie S, Carai MA, Manzanares J, Cooper TB, Hungund BL, Colombo G (2012) Innate difference in the endocannabinoid signaling and its modulation by alcohol consumption in alcohol-preferring sP rats. Addict Biol 17(1):62–75. doi: 10.1111/j.1369-1600.2010.00299.x PubMedCrossRefGoogle Scholar
  465. Viveros MP, Marco EM, Llorente R, Lopez-Gallardo M (2007) Endocannabinoid system and synaptic plasticity: implications for emotional responses. Neural Plast 2007:52908. doi: 10.1155/2007/52908 PubMedPubMedCentralCrossRefGoogle Scholar
  466. Vlachou S, Nomikos GG, Panagis G (2003) WIN 55,212-2 decreases the reinforcing actions of cocaine through CB1 cannabinoid receptor stimulation. Behav Brain Res 141(2):215–222PubMedCrossRefGoogle Scholar
  467. Vlachou S, Nomikos GG, Panagis G (2006) Effects of endocannabinoid neurotransmission modulators on brain stimulation reward. Psychopharmacology (Berl) 188(3):293–305. doi: 10.1007/s00213-006-0506-0 CrossRefGoogle Scholar
  468. Vlachou S, Stamatopoulou F, Nomikos GG, Panagis G (2008) Enhancement of endocannabinoid neurotransmission through CB1 cannabinoid receptors counteracts the reinforcing and psychostimulant effects of cocaine. Int J Neuropsychopharmacol 11(7):905–923. doi: 10.1017/S1461145708008717 PubMedCrossRefGoogle Scholar
  469. Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 64(11):1575–1579. doi: 10.1001/archneur.64.11.1575 PubMedCrossRefGoogle Scholar
  470. Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46. doi: 10.1016/j.tics.2010.11.001 PubMedCrossRefGoogle Scholar
  471. Wade MR, Degroot A, Nomikos GG (2006) Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur J Pharmacol 551(1–3):162–167. doi: 10.1016/j.ejphar.2006.08.083 PubMedCrossRefGoogle Scholar
  472. Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452(3):295–301PubMedCrossRefGoogle Scholar
  473. Wamsteeker JI, Kuzmiski JB, Bains JS (2010) Repeated stress impairs endocannabinoid signaling in the paraventricular nucleus of the hypothalamus. J Neurosci 30(33):11188–11196. doi: 10.1523/JNEUROSCI.1046-10.2010 PubMedCrossRefGoogle Scholar
  474. Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G (2003a) Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc Natl Acad Sci USA 100(3):1393–1398. doi: 10.1073/pnas.0336351100 PubMedPubMedCentralCrossRefGoogle Scholar
  475. Wang X, Dow-Edwards D, Keller E, Hurd YL (2003b) Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 118(3):681–694PubMedCrossRefGoogle Scholar
  476. Wang W, Sun D, Pan B, Roberts CJ, Sun X, Hillard CJ, Liu QS (2010) Deficiency in endocannabinoid signaling in the nucleus accumbens induced by chronic unpredictable stress. Neuropsychopharmacology 35(11):2249–2261. doi: 10.1038/npp.2010.99 PubMedPubMedCentralCrossRefGoogle Scholar
  477. Ward SJ, Walker EA, Dykstra LA (2007) Effect of cannabinoid CB1 receptor antagonist SR141716A and CB1 receptor knockout on cue-induced reinstatement of Ensure and corn-oil seeking in mice. Neuropsychopharmacology 32(12):2592–2600. doi: 10.1038/sj.npp.1301384 PubMedCrossRefGoogle Scholar
  478. Ward SJ, Rosenberg M, Dykstra LA, Walker EA (2009) The CB1 antagonist rimonabant (SR141716) blocks cue-induced reinstatement of cocaine seeking and other context and extinction phenomena predictive of relapse. Drug Alcohol Depend 105(3):248–255. doi: 10.1016/j.drugalcdep.2009.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  479. Wei D, Lee D, Li D, Daglian J, Jung KM, Piomelli D (2016) A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology (Berl) 233(10):1911–1919. doi: 10.1007/s00213-016-4222-0 CrossRefGoogle Scholar
  480. Werling LL, Reed SC, Wade D, Izenwasser S (2009) Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats. Int J Dev Neurosci 27(3):263–269. doi: 10.1016/j.ijdevneu.2008.12.008 PubMedPubMedCentralCrossRefGoogle Scholar
  481. West R, Gossop M (1994) Overview: A comparison of withdrawal symptoms from different drug classes. Addiction 89(11):1483–1489PubMedCrossRefGoogle Scholar
  482. Wikler A (1948) Recent progress in research on the neurophysiologic basis of morphine addiction. Am J Psychiatry 105(5):329–338. doi: 10.1176/ajp.105.5.329 PubMedCrossRefGoogle Scholar
  483. Wiley JL, Golden KM, Ryan WJ, Balster RL, Razdan RK, Martin BR (1997) Evaluation of cannabimimetic discriminative stimulus effects of anandamide and methylated fluoroanandamide in rhesus monkeys. Pharmacol Biochem Behav 58(4):1139–1143PubMedCrossRefGoogle Scholar
  484. Wiley JL, Walentiny DM, Wright MJ Jr, Beardsley PM, Burston JJ, Poklis JL, Lichtman AH, Vann RE (2014) Endocannabinoid contribution to Delta(9)-tetrahydrocannabinol discrimination in rodents. Eur J Pharmacol 737:97–105. doi: 10.1016/j.ejphar.2014.05.013 PubMedPubMedCentralCrossRefGoogle Scholar
  485. Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 143(3):315–317CrossRefGoogle Scholar
  486. Wise LE, Harloe JP, Lichtman AH (2009) Fatty acid amide hydrolase (FAAH) knockout mice exhibit enhanced acquisition of an aversive, but not of an appetitive, Barnes maze task. Neurobiol Learn Mem 92(4):597–601. doi: 10.1016/j.nlm.2009.06.001 PubMedPubMedCentralCrossRefGoogle Scholar
  487. Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G, Muller A, Melnik A, Waltinger TP, Ullrich O, Kempermann G (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12. doi: 10.1186/1478-811X-8-12 PubMedPubMedCentralCrossRefGoogle Scholar
  488. Xi ZX, Gilbert JG, Peng XQ, Pak AC, Li X, Gardner EL (2006) Cannabinoid CB1 receptor antagonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. J Neurosci 26(33):8531–8536. doi: 10.1523/JNEUROSCI.0726-06.2006 PubMedCrossRefGoogle Scholar
  489. Xi ZX, Spiller K, Pak AC, Gilbert J, Dillon C, Li X, Peng XQ, Gardner EL (2008) Cannabinoid CB1 receptor antagonists attenuate cocaine’s rewarding effects: experiments with self-administration and brain-stimulation reward in rats. Neuropsychopharmacology 33(7):1735–1745. doi: 10.1038/sj.npp.1301552 PubMedCrossRefGoogle Scholar
  490. Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat Neurosci 14(9):1160–1166. doi: 10.1038/nn.2874 PubMedPubMedCentralCrossRefGoogle Scholar
  491. Yamaguchi T, Hagiwara Y, Tanaka H, Sugiura T, Waku K, Shoyama Y, Watanabe S, Yamamoto T (2001) Endogenous cannabinoid, 2-arachidonoylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res 909(1-2):121–126PubMedCrossRefGoogle Scholar
  492. Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26(4):327–337. doi: 10.1007/s12264-010-0323-7 PubMedCrossRefGoogle Scholar
  493. Yin HH, Ostlund SB, Balleine BW (2008) Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci 28(8):1437–1448. doi: 10.1111/j.1460-9568.2008.06422.x PubMedPubMedCentralCrossRefGoogle Scholar
  494. Yoshida R, Ohkuri T, Jyotaki M, Yasuo T, Horio N, Yasumatsu K, Sanematsu K, Shigemura N, Yamamoto T, Margolskee RF, Ninomiya Y (2010) Endocannabinoids selectively enhance sweet taste. Proc Natl Acad Sci USA 107(2):935–939. doi: 10.1073/pnas.0912048107 PubMedCrossRefGoogle Scholar
  495. Zhang HY, Bi GH, Li X, Li J, Qu H, Zhang SJ, Li CY, Onaivi ES, Gardner EL, Xi ZX, Liu QR (2014a) Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology 40(4):1037–1051. doi: 10.1038/npp.2014.297 PubMedPubMedCentralCrossRefGoogle Scholar
  496. Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014b) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA 111(46):E5007–E5015. doi: 10.1073/pnas.1413210111 PubMedPubMedCentralCrossRefGoogle Scholar
  497. Zlebnik NE, Cheer JF (2016) Drug-induced alterations of endocannabinoid-mediated plasticity in brain reward regions. J Neurosci 36(40):10230–10238. doi: 10.1523/JNEUROSCI.1712-16.2016 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sarah A. Laredo
    • 1
  • William R. Marrs
    • 1
  • Loren H. Parsons
    • 1
  1. 1.Committee on the Neurobiology of Addictive DisordersThe Scripps Research InstituteLa JollaUSA

Personalised recommendations