The Use of Computational Modeling to Link Sensory Processing with Behavior in Drosophila



Understanding both how the brain represents information and how these representations drive behaviour are major goals of systems neuroscience. Even though genetic model organisms like Drosophila grant unprecedented experimental access to the nervous system for manipulating and recording neural activity, the complexity of natural stimuli and natural behaviours still poses significant challenges for solving the connections between neural activity and behaviour. Here, we advocate for the use of computational modelling to complement (and enhance) the Drosophila toolkit. We first lay out a modelling framework for making sense of the relation between natural sensory stimuli, neuronal responses, and natural behaviour. We then highlight how this framework can be used to reveal how neural circuits drive behaviour, using selected case studies.


  1. Aimon S, Katsuki T, Grosenick L, Broxton M, Deisseroth K, Sejnowski TJ, Greenspan RJ (2016) Linking stimuli and behavior with fast near-whole brain recordings in adult Drosophila. bioRxiv 033803. doi: 10.1101/033803
  2. Aljadeff J, Lansdell BJ, Fairhall AL, Kleinfeld D (2016) Analysis of neuronal spike trains, deconstructed. Neuron 91:221–259. doi: 10.1016/j.neuron.2016.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aptekar JW, Shoemaker PA, Frye MA (2012) Figure tracking by flies is supported by parallel visual streams. Curr Biol 22:482–487. doi: 10.1016/j.cub.2012.01.044 CrossRefPubMedGoogle Scholar
  4. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-T, Dionne H, Abbott L, Axel R, Tanimoto H, Rubin GM (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. eLife. doi: 10.7554/eLife.04577
  5. Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36:909–919. doi: 10.1016/S0896-6273(02)01050-4 CrossRefPubMedGoogle Scholar
  6. Badel L, Ohta K, Tsuchimoto Y, Kazama H (2016) Decoding of context-dependent olfactory behavior in Drosophila. Neuron. doi: 10.1016/j.neuron.2016.05.022 PubMedGoogle Scholar
  7. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C (2014) Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–430. doi: 10.1038/nature13427 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bell JS, Wilson RI (2016) Behavior reveals selective summation and max pooling among olfactory processing channels. Neuron. doi: 10.1016/j.neuron.2016.06.011 Google Scholar
  9. Berman GJ, Choi DM, Bialek W, Shaevitz JW (2014) Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface 11. doi: 10.1098/rsif.2014.0672
  10. Berman GJ, Bialek W, Shaevitz JW (2016) Predictability and hierarchy in Drosophila behaviorGoogle Scholar
  11. Bouchard MB, Voleti V, Mendes CS, Lacefield C, Grueber WB, Mann RS, Bruno RM, Hillman EMC (2015) Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat Photonics 9:113–119. doi: 10.1038/nphoton.2014.323 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13:87–100CrossRefPubMedGoogle Scholar
  13. Brunton BW, Botvinick MM, Brody CD (2013) Rats and humans can optimally accumulate evidence for decision-making. Science 340:95–98. doi: 10.1126/science.1233912 CrossRefPubMedGoogle Scholar
  14. Censi A, Straw AD, Sayaman RW, Murray RM, Dickinson MH (2013) Discriminating external and internal causes for heading changes in freely flying Drosophila. PLoS Comput Biol 9:e1002891. doi: 10.1371/journal.pcbi.1002891.s002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Netw Comput Neural Syst 12:199–213CrossRefGoogle Scholar
  16. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR (2011) Defining the computational structure of the motion detector in Drosophila. Neuron 70:1165–1177. doi: 10.1016/j.neuron.2011.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Clemens J, Hennig RM (2013) Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 35:75–85. doi: 10.1007/s10827-013-0441-0 CrossRefPubMedGoogle Scholar
  18. Clemens J, Krämer S, Ronacher B (2014) Asymmetrical integration of sensory information during mating decisions in grasshoppers. Proc Natl Acad Sci U S A 111:16562–16567. doi: 10.1073/pnas.1412741111 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clemens J, Girardin CC, Coen P, Guan X-J, Dickson BJ, Murthy M (2015a) Connecting neural codes with behavior in the auditory system of Drosophila. Neuron 87:1332–1343. doi: 10.1016/j.neuron.2015.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clemens J, Rau F, Hennig RM, Hildebrandt KJ (2015b) Context-dependent coding and gain control in the auditory system of crickets. Eur J Neurosci 42:2390–2406. doi: 10.1111/ejn.13019 CrossRefPubMedGoogle Scholar
  21. Coen P, Clemens J, Weinstein AJ, Pacheco DA, Deng Y, Murthy M (2014) Dynamic sensory cues shape song structure in Drosophila. Nature 507:233–237. doi: 10.1038/nature13131 CrossRefPubMedGoogle Scholar
  22. Coen P, Xie M, Clemens J, Murthy M (2016) Sensorimotor transformations underlying variability in song intensity during Drosophila courtship. Neuron 89:629–644. doi: 10.1016/j.neuron.2015.12.035 CrossRefPubMedPubMedCentralGoogle Scholar
  23. DasGupta S, Ferreira CH, Miesenböck G (2014) FoxP influences the speed and accuracy of a perceptual decision in Drosophila. Science 344:901–904. doi: 10.1126/science.1252114 CrossRefPubMedPubMedCentralGoogle Scholar
  24. de Vries SEJ, Clandinin TR (2012) Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol 22:353–362. doi: 10.1016/j.cub.2012.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A (2011) Internal structure of the fly elementary motion detector. Neuron 70:1155–1164. doi: 10.1016/j.neuron.2011.03.028 CrossRefPubMedGoogle Scholar
  26. Escola S, Fontanini A, Katz D, Paninski L (2011) Hidden Markov models for the stimulus–response relationships of multistate neural systems. Neural Comput 23:1071–1132. doi: 10.1162/neco_a_00118 CrossRefPubMedGoogle Scholar
  27. Fitzgerald JE, Clark DA, Carandini M (2015) Nonlinear circuits for naturalistic visual motion estimation. eLife 4:e09123. doi: 10.7554/eLife.09123
  28. Fründ I, Wichmann FA, Macke JH (2014) Quantifying the effect of intertrial dependence on perceptual decisions. J Vis 14:9. doi: 10.1167/14.7.9 CrossRefPubMedGoogle Scholar
  29. Gepner R, Mihovilovic Skanata M, Bernat NM, Kaplow M, Gershow M (2015) Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration. eLife 4:599. doi: 10.7554/eLife.06229
  30. Gomez-Marin A, Stephens GJ, Louis M (2011) Active sampling and decision making in Drosophila chemotaxis. Nat Commun 2:441. doi: 10.1038/ncomms1455 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grover D, Katsuki T, Greenspan RJ (2016) Flyception: imaging brain activity in freely walking fruit flies. Nat Methods. doi: 10.1038/nmeth.3866 PubMedGoogle Scholar
  32. Haefner RM, Gerwinn S, Macke JH, Bethge M (2013) Inferring decoding strategies from choice probabilities in the presence of correlated variability. Nat Neurosci 16:235–242. doi: 10.1038/nn.3309 CrossRefPubMedGoogle Scholar
  33. Harris DT, Kallman BR, Mullaney BC, Scott K (2015) Representations of taste modality in the Drosophila brain. Neuron 86:1449–1460. doi: 10.1016/j.neuron.2015.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hernandez-Nunez L, Belina J, Klein M, Si G, Claus L, Carlson JR, Samuel AD, Calabrese RL (2015) Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics. eLife 4:e06225. doi: 10.7554/eLife.06225
  35. Jefferis GSXE, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, Luo L (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203. doi: 10.1016/j.cell.2007.01.040 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kato S, Xu Y, Cho CE, Abbott LF, Bargmann CI (2014) Temporal responses of C. elegans chemosensory neurons are preserved in behavioral dynamics. Neuron 81:616–628. doi: 10.1016/j.neuron.2013.11.020 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim AJ, Fitzgerald JK, Maimon G (2015) Cellular evidence for efference copy in Drosophila visuomotor processing. Nat Neurosci 18:1247–1255. doi: 10.1038/nn.4083 CrossRefPubMedGoogle Scholar
  38. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. doi: 10.1038/nmeth.2836 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Klein M, Afonso B, Vonner AJ, Hernandez-Nunez L, Berck M, Tabone CJ, Kane EA, Pieribone VA, Nitabach MN, Cardona A, Zlatic M, Sprecher SG, Gershow M, Garrity PA, Samuel ADT (2014) Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proc Natl Acad Sci U S A 112:E220–E229. doi: 10.1073/pnas.1416212112 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A (2016) Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat Neurosci 19:706–715. doi: 10.1038/nn.4262 CrossRefPubMedGoogle Scholar
  41. Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig J, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, Ji N (2016) Video-rate volumetric functional imaging of the brain at synaptic resolution. bioRxiv. doi: 10.1101/058495
  42. Machens CK, Zador AM (2003) Auditory modeling gets an edge. J Neurophysiol 90:3581–3582. doi: 10.1152/jn.00832.2003 CrossRefPubMedGoogle Scholar
  43. Martelli C, Carlson JR, Emonet T (2013) Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J Neurosci 33:6285–6297. doi: 10.1523/JNEUROSCI.0426-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mineault PJ, Barthelmé S, Pack CC (2009) Improved classification images with sparse priors in a smooth basis. J Vis 9:1–24CrossRefPubMedGoogle Scholar
  45. Murthy M, Fiete I, Laurent G (2008) Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59:1009–1023. doi: 10.1016/j.neuron.2008.07.040 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nagel KI, Wilson RI (2011) Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat Neurosci 14:208–216. doi: 10.1038/nn.2725 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ozuysal Y, Baccus SA (2012) Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73:1002–1015. doi: 10.1016/j.neuron.2011.12.029 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paninski L (2003) Convergence properties of three spike-triggered analysis techniques. Netw Comput Neural Syst 14:437–464CrossRefGoogle Scholar
  49. Park M, Pillow JW (2011) Receptive field inference with localized priors. PLoS Comput Biol 7:e1002219. doi: 10.1371/journal.pcbi.1002219 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci 21:227–277. doi: 10.1146/annurev.neuro.21.1.227 CrossRefPubMedGoogle Scholar
  51. Parnas M, Lin AC, Huetteroth W, Miesenböck G (2013) Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 79:932–944. doi: 10.1016/j.neuron.2013.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454:995–999. doi: 10.1038/nature07140 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rabinowitz NC, Willmore BDB, Schnupp JW, King AJ (2011) Contrast gain control in auditory cortex. Neuron 70:1178–1191. doi: 10.1016/j.neuron.2011.04.030 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rajan K, Marre O, Tkačik G (2013) Learning quadratic receptive fields from neural responses to natural stimuli. Neural Comput. doi: 10.1162/NECO_a_00463 PubMedGoogle Scholar
  55. Ramdya P, Lichocki P, Cruchet S, Frisch L, Tse W, Floreano D, Benton R (2015) Mechanosensory interactions drive collective behaviour in Drosophila. Nature 519:233–236. doi: 10.1038/nature14024 CrossRefPubMedGoogle Scholar
  56. Schönfelder VH, Wichmann FA (2012) Sparse regularized regression identifies behaviorally-relevant stimulus features from psychophysical data. J Acoust Soc Am 131:3953–3969. doi: 10.1121/1.3701832 CrossRefPubMedGoogle Scholar
  57. Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M, Ahammad P, Deogade A, Sharpe J, Riedl J, Jarriault D, Trautman ET, Werner C, Venkadesan M, Druckmann S, Jayaraman V, Louis M (2015) Dynamical feature extraction at the sensory periphery guides chemotaxis. eLife. doi: 10.7554/eLife.06694
  58. Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis 6:484–507. doi: 10.1167/6.4.13 CrossRefPubMedGoogle Scholar
  59. Seelig JD, Jayaraman V (2013) Feature detection and orientation tuning in the Drosophila central complex. Nature. doi: 10.1038/nature12601 PubMedPubMedCentralGoogle Scholar
  60. Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540. doi: 10.1038/nmeth.1468 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sharpee TO (2013) Computational identification of receptive fields. Annu Rev Neurosci 36:103–120. doi: 10.1146/annurev-neuro-062012-170253 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Silies M, Gohl DM, Clandinin TR (2014) Motion-detecting circuits in flies: coming into view. Annu Rev Neurosci 37:307–327. doi: 10.1146/annurev-neuro-071013-013931 CrossRefPubMedGoogle Scholar
  63. Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216. doi: 10.1146/annurev.neuro.24.1.1193 CrossRefPubMedGoogle Scholar
  64. Suh B, Baccus SA (2014) Building blocks of temporal filters in retinal synapses. PLoS Biol 12:e1001973. doi: 10.1371/journal.pbio.1001973 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93:1074–1089. doi: 10.1152/jn.00697.2004 CrossRefPubMedGoogle Scholar
  66. van Breugel F, Dickinson MH (2014) Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr Biol 24:274–286. doi: 10.1016/j.cub.2013.12.023 CrossRefPubMedGoogle Scholar
  67. Vogelstein JT, Park Y, Ohyama T, Kerr R, Truman JW, Priebe CE, Zlatic M (2014) Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science. doi: 10.1126/science.1250298 Google Scholar
  68. von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, Leonardo A, Card GM (2014) A spike-timing mechanism for action selection. Nat Neurosci 17:962–970. doi: 10.1038/nn.3741 CrossRefGoogle Scholar
  69. Williamson RS, Sahani M, Pillow JW (2015) The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction. PLoS Comput Biol 11:e1004141. doi: 10.1371/journal.pcbi.1004141 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wiltschko AB, Johnson MJ, Iurilli G, Peterson RE, Katon JM, Pashkovski SL, Abraira VE, Adams RP, Datta SR (2015) Mapping sub-second structure in mouse behavior. Neuron 88:1121–1135. doi: 10.1016/j.neuron.2015.11.031 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zucchini W (2000) An introduction to model selection. J Math Psychol 44:41–61. doi: 10.1006/jmps.1999.1276 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Princeton Neuroscience InstitutePrinceton UniversityPrincetonUSA

Personalised recommendations