Skip to main content

Paradigms for the Quantification of Behavioral Responses in Zebrafish

  • Chapter
  • First Online:
Decoding Neural Circuit Structure and Function

Abstract

The increasing popularity of the zebrafish (Danio rerio) as a vertebrate model organism has made it the most genetically studied vertebrate, only surpassed by the mouse. Zebrafish popularity stems from its favorable biological properties such as its high fecundity, rapid development, and (as larva) optical transparency. Recent years have seen the development of an impressive genetic toolbox for the zebrafish. While earlier geneticists had to rely on mutant strains generated by random chemical mutagenesis, zebrafish researchers have now the full complement of modern genetic tools at their fingertips. This includes efficient transposon-mediated transgenesis and CRISPR/Cas9-mediated genome editing. These recent genetic advances in combination with the optical properties of the larva enable sophisticated neural circuit analyses, unsurpassed in any other vertebrate organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485(7399):471–477. doi:10.1038/nature11057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahrens MB, Huang KH, Narayan S, Mensh BD, Engert F (2013) Two-photon calcium imaging during fictive navigation in virtual environments. Front Neural Circuits 7 104. doi:10.3389/fncir.2013.00104

  • Bang PI, Yelick PC, Malicki JJ, Sewell WF (2002) High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J Neurosci Methods 118(2):177–187

    Article  PubMed  Google Scholar 

  • Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768. doi:10.1016/j.neuroscience.2004.11.031

    Article  CAS  PubMed  Google Scholar 

  • Baraban SC, Dinday MT, Castro PA, Chege S, Guyenet S, Taylor MR (2007) A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48(6):1151–1157. doi:10.1111/j.1528-1167.2007.01075.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410. doi:10.1038/ncomms3410

    Article  PubMed  PubMed Central  Google Scholar 

  • Baxendale S, Holdsworth CJ, Santoscoy M, Paola L, Harrison Michael RM, Fox J, Parkin CA et al (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Models Mech 5(6):773–784. doi:10.1242/dmm.010090

    Article  CAS  Google Scholar 

  • Beck JC, Gilland E, Tank DW, Baker R (2004) Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 92(6):3546–3561. doi:10.1152/jn.00311.2004

    Article  PubMed  Google Scholar 

  • Bianco IH, Engert F (2015) Visuomotor transformations underlying hunting behavior in zebrafish. Curr Biol (CB) 25(7):831–846. doi:10.1016/j.cub.2015.01.042

    Article  CAS  Google Scholar 

  • Bilotta J (2000) Effects of abnormal lighting on the development of zebrafish visual behavior. Behav Brain Res 116(1):81–87

    Article  CAS  PubMed  Google Scholar 

  • Borla MA, Palecek B, Budick S, O’Malley DM (2002) Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav Evol 60(4):207–229

    Article  PubMed  Google Scholar 

  • Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A 92(23):10545–10549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockerhoff SE, Dowling JE, Hurley JB (1998) Zebrafish retinal mutants. Vision Res 38(10):1335–1339

    Article  CAS  PubMed  Google Scholar 

  • Bruni G, Rennekamp AJ, Velenich A, McCarroll M, Gendelev L, Fertsch E et al (2016) Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12(7):559–566. doi:10.1038/nchembio.2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brustein E, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Drapeau P (2003) Steps during the development of the zebrafish locomotor network. J Physiol Paris 97(1):77–86. doi:10.1016/j.jphysparis.2003.10.009

    Article  PubMed  Google Scholar 

  • Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203(Pt 17):2565–2579

    CAS  PubMed  Google Scholar 

  • Burgess HA, Granato M (2007a) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(Pt 14):2526–2539. doi:10.1242/jeb.003939

    Article  PubMed  Google Scholar 

  • Burgess HA, Granato M (2007b) Sensorimotor gating in larval zebrafish. J Neurosci (Official J Soc Neurosci) 27(18):4984–4994. doi:10.1523/JNEUROSCI.0615-07.2007

    Article  CAS  Google Scholar 

  • Burgess HA, Johnson SL, Granato M (2009) Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 8(5):500–511. doi:10.1111/j.1601-183X.2009.00499.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess HA, Schoch H, Granato M (2010) Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr biol (CB) 20(4):381–386. doi:10.1016/j.cub.2010.01.022

    Article  CAS  Google Scholar 

  • Clark DT (1981) Visual responses in developing zebrafish (Brachydanio rerio). Ph.D. dissertation, University of Oregon Press, Eugene, OR

    Google Scholar 

  • Colwill RM, Creton R (2011) Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 22(1):63–73. doi:10.1515/RNS.2011.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunliffe VT (2016) Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures. J Neurosci Methods 260:91–95. doi:10.1016/j.jneumeth.2015.07.015

    Article  PubMed  Google Scholar 

  • Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68(2):85–111

    Article  CAS  PubMed  Google Scholar 

  • Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Visualized Exp(JoVE) (20). doi:10.3791/923

  • Emran F, Rihel J, Adolph AR, Wong KY, Kraves S, Dowling JE (2007) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104(48):19126–19131. doi:10.1073/pnas.0709337104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engert F (2012) Fish in the matrix: motor learning in a virtual world. Front Neural Circuits 6:125. doi:10.3389/fncir.2012.00125

    PubMed  Google Scholar 

  • Fetcho JR (1991) Spinal network of the Mauthner cell. Brain Behav Evol 37(5):298–316

    Article  CAS  PubMed  Google Scholar 

  • Fetcho JR, O’Malley DM (1997) Imaging neuronal networks in behaving animals. Curr Opin Neurobiol 7(6):832–838

    Article  CAS  PubMed  Google Scholar 

  • Filosa A, Barker AJ, Dal Maschio M, Baier H (2016) Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90(3):596–608. doi:10.1016/j.neuron.2016.03.014

  • Fleisch VC, Neuhauss Stephan CF (2006) Visual behavior in zebrafish. Zebrafish 3(2):191–201. doi:10.1089/zeb.2006.3.191

    Article  PubMed  Google Scholar 

  • Granato M, Van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M et al (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development (Cambridge, England) 123:399–413

    Google Scholar 

  • Grone BP, Baraban SC (2015) Animal models in epilepsy research: legacies and new directions. Nat Neurosci 18(3):339–343. doi:10.1038/nn.3934

    Article  CAS  PubMed  Google Scholar 

  • Gross JM, Perkins BD, Amsterdam A, Egana A, Darland T, Matsui JI et al (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170(1):245–261. doi:10.1534/genetics.104.039727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S et al (2016) Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron 89(4):725–733. doi:10.1016/j.neuron.2015.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hortopan GA, Dinday MT, Baraban SC (2010) Zebrafish as a model for studying genetic aspects of epilepsy. Dis Models Mech 3(3–4):144–148. doi:10.1242/dmm.002139

    Article  CAS  Google Scholar 

  • Huang Y-Y, Neuhauss Stephan CF (2008) The optokinetic response in zebrafish and its applications. Front Biosci J Virtual Libr 13:1899–1916

    Article  Google Scholar 

  • Hughes, Virginia (2013) Mapping brain networks: fish-bowl neuroscience. Nature 493 (7433):466–468. DOI: 10.1038/493466a

  • Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain J Neurol 137(Pt 8):2210–2230. doi:10.1093/brain/awu133

    Article  Google Scholar 

  • Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86. doi:10.1089/zeb.2012.0861

  • Kermen F, Franco LM, Wyatt C, Yaksi E (2013) Neural circuits mediating olfactory-driven behavior in fish. Front Neural Circuits 7:62. doi:10.3389/fncir.2013.00062

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Sessions SK, Kimmel RJ (1981) Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron. J Comp Neurol 198(1):101–120. doi:10.1002/cne.901980110

    Article  CAS  PubMed  Google Scholar 

  • Kohashi Tsunehiko, Oda Yoichi (2008) Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J Neurosci (Official J Soc Neurosci) 28(42):10641–10653. doi:10.1523/JNEUROSCI.1435-08.2008

    Article  CAS  Google Scholar 

  • Kokel D, Bryan J, Laggner C, White R, Cheung Chung YJ, Mateus R et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237. doi:10.1038/nchembio.307

  • Kokel D, Dunn TW, Ahrens MB, Alshut R, Cheung Chung YJ, Saint-Amant L et al (2013) Identification of nonvisual photomotor response cells in the vertebrate hindbrain. J Neurosci (Official J Soc Neurosci) 33(9):3834–3843. doi:10.1523/JNEUROSCI.3689-12.2013

    Article  CAS  Google Scholar 

  • Liu YC, Bailey I, Hale ME (2012) Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). J Comp Physiol (A Neuroethology Sens Neural Behav Physiol) 198(1):11–24. doi:10.1007/s00359-011-0682-1

  • Maaswinkel H, Li L (2003) Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision Res 43(1):21–30

    Article  PubMed  Google Scholar 

  • Maaswinkel H, Zhu L, Weng W (2013) Using an automated 3D-tracking system to record individual and shoals of adult zebrafish. J Visualized Exp (JoVE) 82:50681. doi:10.3791/50681

    Google Scholar 

  • Maaswinkel H, Zhu L, Weng W (2015) A small-fish model for behavioral-toxicological screening of new antimalarial drugs: a comparison between erythro- and threo-mefloquine. BMC Res Notes 8:122. doi:10.1186/s13104-015-1088-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathuru AS, Kibat C, Cheong WF, Shui G, Wenk MR, Friedrich RW, Jesuthasan S (2012) Chondroitin fragments are odorants that trigger fear behavior in fish. Curr biol (CB) 22(6):538–544. doi:10.1016/j.cub.2012.01.061

  • Maurer CM, Schonthaler HB, Mueller KP, Neuhauss Stephan CF (2010) Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant. J Neurosci (Official J Soc Neurosci) 30(36):11962–11972. doi:10.1523/JNEUROSCI.2848-10.2010

    Article  CAS  Google Scholar 

  • McElligott MB, O’Malley DM (2005a) Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol 66(3):177–196. doi:10.1159/000087158

    Article  PubMed  Google Scholar 

  • McElligott MB, O’Malley DM (2005b) Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol 66(3):177–196. doi:10.1159/000087158

    Article  PubMed  Google Scholar 

  • Moravec CE, Li E, Maaswinkel H, Kritzer MF, Weng W, Sirotkin HI (2015) Rest mutant zebrafish swim erratically and display atypical spatial preferences. Behav Brain Res 284:238–248. doi:10.1016/j.bbr.2015.02.026

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller KP, Neuhauss Stephan CF (2010a) Behavioral neurobiology: how larval fish orient towards the light. Curr Biol (CB) 20(4):159–161. doi:10.1016/j.cub.2009.12.028

    Article  Google Scholar 

  • Mueller KP, Neuhauss Stephan CF (2010b) Quantitative measurements of the optokinetic response in adult fish. J Neurosci Methods 186(1):29–34. doi:10.1016/j.jneumeth.2009.10.020

    Article  PubMed  Google Scholar 

  • Mueller KP, Schnaedelbach Oliver DR, Russig HD, Neuhauss Stephan CF (2011) Visiotracker, an innovative automated approach to oculomotor analysis. J Visualized Exp (JoVE) 56. doi:10.3791/3556

  • Muto A, Kawakami K (2013) Prey capture in zebrafish larvae serves as a model to study cognitive functions. Front Neural Circuits 7:110. doi:10.3389/fncir.2013.00110

    PubMed  PubMed Central  Google Scholar 

  • Neuhauss SC, Biehlmaier O, Seeliger MW, Das T, Kohler K, Harris WA, Baier H (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci (Official J Soc Neurosci) 19(19):8603–8615

    CAS  Google Scholar 

  • Neuhauss, Stephan CF (2003) Behavioral genetic approaches to visual system development and function in zebrafish. J Neurobiol 54(1):148–160. DOI: 10.1002/neu.10165

  • Nicolson T, Rusch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein-Volhard C (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20(2):271–283

    Article  CAS  PubMed  Google Scholar 

  • O’Malley DM, Kao YH, Fetcho JR (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17(6):1145–1155

    Article  PubMed  Google Scholar 

  • Orger MB, Baier H (2005) Channeling of red and green cone inputs to the zebrafish optomotor response. Vis Neurosci 22(3):275–281. doi:10.1017/S0952523805223039

    Article  PubMed  Google Scholar 

  • Patterson BW, Abraham AO, MacIver MA, McLean DL (2013) Visually guided gradation of prey capture movements in larval zebrafish. J Exp Biol 216(16):3071–3083. doi:10.1242/jeb.087742

    Article  PubMed  PubMed Central  Google Scholar 

  • Portugues R, Engert F (2011) Adaptive locomotor behavior in larval zebrafish. Front Syst Neurosci 5:72. doi:10.3389/fnsys.2011.00072

    Article  PubMed  PubMed Central  Google Scholar 

  • Portugues R, Feierstein CE, Engert F, Orger MB (2014) Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81(6):1328–1343. doi:10.1016/j.neuron.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prober DA, Zimmerman S, Myers BR, McDermott BM, Rihel J, Kim SH, Caron S et al (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci (Official J Soc Neurosci) 28(40):10102–10110. doi:10.1523/JNEUROSCI.2740-08.2008

    Article  CAS  Google Scholar 

  • Raftery TD, Isales GM, Yozzo KL, Volz DC (2014) High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos. Environ Sci Technol 48(1):804–810. doi:10.1021/es404322p

    Article  CAS  PubMed  Google Scholar 

  • Richendrfer H, Pelkowski SD, Colwill RM, Creton R (2012) On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res 228(1):99–106. doi:10.1016/j.bbr.2011.11.041

    Article  CAS  PubMed  Google Scholar 

  • Rihel J, Schier AF (2012) Behavioral screening for neuroactive drugs in zebrafish. Dev Neurobiol 72(3):373–385. doi:10.1002/dneu.20910

    Article  CAS  PubMed  Google Scholar 

  • Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S et al (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science (New York, N.Y.) 327(5963):348–351. doi:10.1126/science.1183090

  • Rinner O, Rick JM, Neuhauss Stephan CF (2005) Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. Invest Ophthalmol Vis Sci 46(1):137–142. doi:10.1167/iovs.04-0682

    Article  PubMed  Google Scholar 

  • Roeser T, Baier H (2003) Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J Neurosci (The Official Journal of the Society for Neuroscience) 23(9):3726–3734

    CAS  Google Scholar 

  • Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37(4):622–632

    Article  CAS  PubMed  Google Scholar 

  • Saint-Amant L, Drapeau P (2000) Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J Neurosci (The Official Journal of the Society for Neuroscience) 20(11):3964–3972

    CAS  Google Scholar 

  • Saint-Amant L, Drapeau P (2001) Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 31(6):1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Schnörr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228(2):367–374. doi:10.1016/j.bbr.2011.12.016

    Article  PubMed  Google Scholar 

  • Selderslaghs Ingrid WT, Hooyberghs J, De Coen W, Witters HE (2010) Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol Teratol 32(4):460–471. doi:10.1016/j.ntt.2010.03.002

  • Selderslaghs Ingrid WT, Hooyberghs J, Blust R, Witters HE (2013) Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 37:44–56. doi:10.1016/j.ntt.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H (2014) A dedicated visual pathway for prey detection in larval zebrafish. eLife 3. doi:10.7554/eLife.04878

  • Siebel AM, Menezes FP, Da Costa Schaefer I, Petersen BD, Bonan CD (2015) Rapamycin suppresses PTZ-induced seizures at different developmental stages of zebrafish. Pharmacol Biochem Behav 139(Pt B):163–168. doi:10.1016/j.pbb.2015.05.022

  • Speedie N, Gerlai R (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188(1):168–177. doi:10.1016/j.bbr.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  • Stewart AM, Desmond D, Kyzar E, Gaikwad S, Roth A, Riehl R, et al. (2012) Perspectives of zebrafish models of epilepsy: what, how and where next? Brain Res Bull 87(2–3):135–143. doi:10.1016/j.brainresbull.2011.11.020

  • Tappeiner C, Gerber S, Enzmann V, Balmer J, Jazwinska A, Tschopp M (2012) Visual acuity and contrast sensitivity of adult zebrafish. Front Zool 9(1):10. doi:10.1186/1742-9994-9-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi CA, Bollmann JH (2013) Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture. Front Neural Circuits 7:86. doi:10.3389/fncir.2013.00086

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Frisch Karl (1938) On the psychology of schooling fish. vol 26, 1938th edn. Naturwissenschaft, pp 601–606

    Google Scholar 

  • Winter M, Redfern WS, Hayfield AJ, Owen SF, Valentin J-P, Hutchinson TH (2008) Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods 57(3):176–187. doi:10.1016/j.vascn.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  • Wolman M, Granato M (2012) Behavioral genetics in larval zebrafish: learning from the young. Dev Neurobiol 72(3):366–372. doi:10.1002/dneu.20872

    Article  CAS  PubMed  Google Scholar 

  • Wong K, Stewart A, Gilder T, Wu N, Frank K, Gaikwad S et al (2010) Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res 1348:209–215. doi:10.1016/j.brainres.2010.06.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all the authors whose work we could not cite due to space limitations. We are grateful to Selin Özgut and Matthias Gesemann for comments on the manuscript. CCC was supported by the RiMED foundation; work in the authors’ laboratory is supported by the Swiss National Science Foundation (31003A_173083). Special thanks to Irene Ojeda Naharros for artwork on both figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan C. F. Neuhauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cianciolo Cosentino, C., Neuhauss, S.C.F. (2017). Paradigms for the Quantification of Behavioral Responses in Zebrafish. In: Çelik, A., Wernet, M. (eds) Decoding Neural Circuit Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-57363-2_8

Download citation

Publish with us

Policies and ethics