Targeted Manipulation of Neuronal Activity in Behaving Adult Flies

Chapter

Abstract

The ability to control the activity of specific neurons in freely behaving animals provides an effective way to probe the contributions of neural circuits to behavior. Wide interest in studying principles of neural circuit function using the fruit fly Drosophila melanogaster has fueled the construction of an extensive transgenic toolkit for performing such neural manipulations. Here we describe approaches for using these tools to manipulate the activity of specific neurons and assess how those manipulations impact the behavior of flies. We also describe methods for examining connectivity among multiple neurons that together form a neural circuit controlling a specific behavior. This chapter provides a resource for researchers interested in examining how neurons and neural circuits contribute to the rich repertoire of behaviors performed by flies.

References

  1. Agrawal S, Safarik S, Dickinson M (2014) The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J Exp Biol 217:2796–2805. doi:10.1242/jeb.105817 PubMedCrossRefGoogle Scholar
  2. Albin SD, Kaun KR, Knapp J-M et al (2015) A subset of serotonergic neurons evokes hunger in adult Drosophila. Curr Biol 25:2435–2440. doi:10.1016/j.cub.2015.08.005 PubMedCrossRefGoogle Scholar
  3. Alekseyenko OV, Chan Y-B, Li R, Kravitz EA (2013) Single dopaminergic neurons that modulate aggression in Drosophila. Proc Natl Acad Sci 110:6151–6156. doi:10.1073/pnas.1303446110 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allada R, Chung BY (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–624. doi:10.1146/annurev-physiol-021909-135815 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson DJ, Perona P (2014) Toward a science of computational ethology. Neuron 84:18–31. doi:10.1016/j.neuron.2014.09.005 PubMedCrossRefGoogle Scholar
  6. Ardekani R, Biyani A, Dalton JE et al (2013) Three-dimensional tracking and behaviour monitoring of multiple fruit flies. J R Soc Interface 10:20120547–20120547. doi:10.1098/rsif.2012.0547
  7. Asahina K, Watanabe K, Duistermars BJ et al (2014) Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156:221–235. doi:10.1016/j.cell.2013.11.045 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aso Y, Hattori D, Yu Y et al (2014a) The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3:e04577–e04577. doi:10.7554/eLife.04577 PubMedPubMedCentralGoogle Scholar
  9. Aso Y, Sitaraman D, Ichinose T et al (2014b) Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 3:e04580. doi:10.7554/eLife.04580 PubMedPubMedCentralGoogle Scholar
  10. Barron AB (2000) Anaesthetising Drosophila for behavioural studies. J Insect Physiol 46:439–442PubMedCrossRefGoogle Scholar
  11. Bath DE, Stowers JR, Hörmann D et al (2014) FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat Methods 11:756–762. doi:10.1038/nmeth.2973 PubMedCrossRefGoogle Scholar
  12. Berck ME, Khandelwal A, Claus L et al (2016) The wiring diagram of a glomerular olfactory system. Elife. doi:10.7554/eLife.14859 PubMedPubMedCentralGoogle Scholar
  13. Berman GJ, Choi DM, Bialek W, Shaevitz JW (2014) Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface. doi:10.1098/rsif.2014.0672 PubMedPubMedCentralGoogle Scholar
  14. Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22:61–71. doi:10.1016/j.conb.2011.10.023 PubMedCrossRefGoogle Scholar
  15. Bidaye SS, Machacek C, Wu Y, Dickson BJ (2014) Neuronal control of Drosophila walking direction. Science 344:97–101. doi:10.1126/science.1249964 PubMedCrossRefGoogle Scholar
  16. Bischof JJ, Maeda RKR, Hediger MM et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci 104:3312–3317. doi:10.1073/pnas.0611511104 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinauer Associates Incorporated, Sunderland, MAGoogle Scholar
  18. Bohm RA, Welch WP, Goodnight LK et al (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci 107:16378–16383. doi:10.1073/pnas.1004669107 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Borgmann A, Büschges A (2015) Insect motor control: methodological advances, descending control and inter-leg coordination on the move. Curr Opin Neurobiol 33:8–15. doi:10.1016/j.conb.2014.12.010 PubMedCrossRefGoogle Scholar
  20. Borst A (2014) Fly visual course control: behaviour, algorithms and circuits. Nat Rev Neurosci 15:590–599. doi:10.1038/nrn3799 PubMedCrossRefGoogle Scholar
  21. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi:10.1038/nn1525 PubMedCrossRefGoogle Scholar
  22. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  23. Branson K, Robie AA, Bender J et al (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457. doi:10.1038/nmeth.1328 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bräcker LB, Siju KP, Varela N et al (2013) Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila. Curr Biol 23:1228–1234. doi:10.1016/j.cub.2013.05.029 PubMedCrossRefGoogle Scholar
  25. Broussard GJ, Liang R, Tian L (2014) Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 7:97. doi:10.3389/fnmol.2014.00097 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Burke CJ, Huetteroth W, Owald D et al (2012) Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437. doi:10.1038/nature11614 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen S, Lee AY, Bowens NM et al (2002) Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci U S A 99:5664–5668. doi:10.1073/pnas.082102599 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi:10.1038/nature12354 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clowney EJ, Iguchi S, Bussell JJ et al (2015) Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 87:1036–1049. doi:10.1016/j.neuron.2015.07.025 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cohn R, Morantte I, Ruta V (2015) Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163:1742–1755. doi:10.1016/j.cell.2015.11.019 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Colomb J, Brembs B (2014) Sub-strains of Drosophila Canton-S differ markedly in their locomotor behavior. F1000Res 3:176–176. doi:10.12688/f1000research.4263.1
  32. Connolly K, Cook R (1973) Rejection responses by female Drosophila melanogaster: their ontogeny, causality and effects upon the behaviour of the courting male. Behaviour 44:142–166CrossRefGoogle Scholar
  33. Costa M, Manton JD, Ostrovsky AD et al (2016) NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron. doi:10.1016/j.neuron.2016.06.012
  34. Dana H, Mohar B, Sun Y et al (2016) Sensitive red protein calcium indicators for imaging neural activity. Elife. doi:10.7554/eLife.12727 PubMedPubMedCentralGoogle Scholar
  35. Dankert H, Wang L, Hoopfer ED et al (2009) Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 6:297–303. doi:10.1038/nmeth.1310 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Datta SR, Vasconcelos ML, Ruta V et al (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477. doi:10.1038/nature06808 PubMedCrossRefGoogle Scholar
  37. Dawydow A, Gueta R, Ljaschenko D et al (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci 111:13972–13977. doi:10.1073/pnas.1408269111 PubMedPubMedCentralCrossRefGoogle Scholar
  38. de Vries SEJ, Clandinin T (2013) Optogenetic stimulation of escape behavior in Drosophila melanogaster. J Visualized Exp. doi:10.3791/50192 Google Scholar
  39. del Valle Rodríguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55. doi:10.1038/nmeth.1800
  40. Dell AI, Bender JA, Branson K et al (2014) Automated image-based tracking and its application in ecology. Trends Ecol Evol (Amst) 29:417–428. doi:10.1016/j.tree.2014.05.004 CrossRefGoogle Scholar
  41. Diao F, Ironfield H, Luan H et al (2015) Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes. Cell Rep 10:1410–1421. doi:10.1016/j.celrep.2015.01.059 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Donelson NC, Donelson N, Kim EZ et al (2012) High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 7:e37250–e37250. doi:10.1371/journal.pone.0037250 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s swiss army knife. genesis 34:1–15. doi:10.1002/gene.10150 PubMedCrossRefGoogle Scholar
  44. Egnor SER, Branson K (2016) Computational analysis of behavior. Annu Rev Neurosci 39:217–236. doi:10.1146/annurev-neuro-070815-013845 PubMedCrossRefGoogle Scholar
  45. Ewing LS, Ewing AW (1984) Courtship in Drosophila melanogaster: behaviour of mixed-sex groups in large observation chambers. Behaviour 90:184–202CrossRefGoogle Scholar
  46. Feinberg EH, VanHoven MK, Bendesky A et al (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363. doi:10.1016/j.neuron.2007.11.030 PubMedCrossRefGoogle Scholar
  47. Fişek M, Wilson RI (2014) Stereotyped connectivity and computations in higher-order olfactory neurons. Nat Neurosci 17:280–288. doi:10.1038/nn.3613 PubMedCrossRefGoogle Scholar
  48. Flood TF, Gorczyca M, White BH et al (2013) A large-scale behavioral screen to identify neurons controlling motor programs in the Drosophila brain. G3 3:1629–1637. doi:10.1534/g3.113.006205
  49. Fosque BF, Sun Y, Dana H et al (2015) Labeling of active neural circuits in vivo with designed calcium integrators. Science 347:755–760. doi:10.1126/science.1260922 PubMedCrossRefGoogle Scholar
  50. Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol. doi:10.1111/2041-210X.12584 Google Scholar
  51. Gao XJ, Potter CJ, Gohl DM et al (2013) Specific kinematics and motor-related neurons for aversive chemotaxis in Drosophila. Curr Biol 23:1163–1172. doi:10.1016/j.cub.2013.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gao XJ, Riabinina O, Li J et al (2015) A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat Neurosci 18:917–925. doi:10.1038/nn.4016 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goda T, Leslie JR, Hamada FN (2014) Design and analysis of temperature preference behavior and its circadian rhythm in Drosophila. J Visualized Exp e51097–e51097. doi:10.3791/51097
  54. Gohl DM, Silies MA, Gao XJ et al (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384. doi:10.1016/j.neuron.2008.12.033 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Greenspan RJ (2004) Fly pushing, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  57. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885. doi:10.1016/j.neuron.2012.02.011 PubMedCrossRefGoogle Scholar
  58. Griffith LC, Ejima A (2009) Courtship learning in Drosophila melanogaster: diverse plasticity of a reproductive behavior. Learn Memory 16:743–750. doi:10.1101/lm.956309 CrossRefGoogle Scholar
  59. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397PubMedCrossRefGoogle Scholar
  60. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166:1775–1782PubMedPubMedCentralCrossRefGoogle Scholar
  61. Grover D, Katsuki T, Greenspan RJ (2016) Flyception: imaging brain activity in freely walking fruit flies. Nat Methods 13:569–572. doi:10.1038/nmeth.3866 PubMedCrossRefGoogle Scholar
  62. Gruber F, Knapek S, Fujita M et al (2013) Suppression of conditioned odor approach by feeding is independent of taste and nutritional value in Drosophila. Curr Biol 23:507–514. doi:10.1016/j.cub.2013.02.010 PubMedCrossRefGoogle Scholar
  63. Gruntman E, Turner GC (2013) Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat Neurosci 16:1821–1829. doi:10.1038/nn.3547 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Guo A, Li L, Shou-zhen X et al (1996) Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Memory 3:49–59CrossRefGoogle Scholar
  65. Haberkern H, Jayaraman V (2016) Studying small brains to understand the building blocks of cognition. Curr Opin Neurobiol 37:59–65. doi:10.1016/j.conb.2016.01.007 PubMedCrossRefGoogle Scholar
  66. Hagedorn J, Hailpern JM, Karahalios K (2008) VCode and VData: illustrating a new framework for supporting the video annotation workflow. AVI 317–321. doi:10.1145/1385569.1385622
  67. Hamada FN, Rosenzweig M, Kang K et al (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220. doi:10.1038/nature07001 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hampel S, Franconville R, Simpson JH, Seeds AM (2015) A neural command circuit for grooming movement control. Elife. doi:10.7554/eLife.08758 PubMedPubMedCentralGoogle Scholar
  69. Harris RM, Pfeiffer BD, Rubin GM, Truman JW (2015) Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. Elife. doi:10.7554/eLife.04493 Google Scholar
  70. Hoffmann AA (1987) A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans Google Scholar
  71. Hoffmann AA (1990) The influence of age and experience with conspecifics on territorial behavior in Drosophila melanogaster Google Scholar
  72. Hoopfer ED (2016) Neural control of aggression in Drosophila. Curr Opin Neurobiol 38:109–118. doi:10.1016/j.conb.2016.04.007 PubMedCrossRefGoogle Scholar
  73. Hoopfer ED, Jung Y, Inagaki HK et al (2015) P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. Elife. doi:10.7554/eLife.11346 PubMedPubMedCentralGoogle Scholar
  74. Hotta Y, Benzer S (1976) Courtship in Drosophila mosaics: sex-specific foci for sequential action patterns. Proc Natl Acad Sci 73:4154–4158PubMedPubMedCentralCrossRefGoogle Scholar
  75. Huang ZJ, Zeng H (2013) Genetic approaches to neural circuits in the mouse. Annu Rev Neurosci 36:183–215. doi:10.1146/annurev-neuro-062012-170307 PubMedCrossRefGoogle Scholar
  76. Huston SJ, Jayaraman V (2011) Studying sensorimotor integration in insects. Curr Opin Neurobiol 21:527–534. doi:10.1016/j.conb.2011.05.030 PubMedCrossRefGoogle Scholar
  77. Inagaki HK, Jung Y, Hoopfer ED et al (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325–332. doi:10.1038/nmeth.2765 PubMedCrossRefGoogle Scholar
  78. Itskov PM, Moreira J-M, Vinnik E et al (2014) Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat Commun 5:4560. doi:10.1038/ncomms5560 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Jenett AA, Rubin GM, Ngo T-TB et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001. doi:10.1016/j.celrep.2012.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kabra M, Robie AA, Rivera-Alba M et al (2013) JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods 10:64–67. doi:10.1038/nmeth.2281 PubMedCrossRefGoogle Scholar
  81. Kallman BR, Kim H, Scott K (2015) Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. Elife 4:e11188. doi:10.7554/eLife.11188 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kaun KR, Devineni AV, Heberlein U (2012) Drosophila melanogaster as a model to study drug addiction. Hum Genet 131:959–975. doi:10.1007/s00439-012-1146-6 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Keene AC, Masek P (2012) Optogenetic induction of aversive taste memory. Neuroscience 222:173–180. doi:10.1016/j.neuroscience.2012.07.028 PubMedCrossRefGoogle Scholar
  84. Keleman K, Vrontou E, Krüttner S et al (2012) Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature 489:145–149. doi:10.1038/nature11345 PubMedCrossRefGoogle Scholar
  85. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. doi:10.1038/nmeth.2836 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Knapp J-M, Chung P, Simpson JH (2015) Generating customized transgene landing sites and multi-transgene arrays in Drosophila using phiC31 integrase. Genetics. doi:10.1534/genetics.114.173187 Google Scholar
  87. Knoppien P, van der Pers JNC, van Delden W (2000) Quantification of locomotion and the effect of food deprivation on locomotor activity in Drosophila. J Insect Behav 13:27–43. doi:10.1023/A:1007759424777 CrossRefGoogle Scholar
  88. Kohl J, Ostrovsky AD, Frechter S, Jefferis GS (2013) A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell 155:1610–1623. doi:10.1016/j.cell.2013.11.025 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Krashes MJ, DasGupta S, Vreede A et al (2009) A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139:416–427. doi:10.1016/j.cell.2009.08.035 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709. doi:10.1038/nn1681 PubMedCrossRefGoogle Scholar
  91. Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  93. Lim RS, Eyjólfsdóttir E, Shin E et al (2014) How food controls aggression in Drosophila. PLoS ONE 9:e105626. doi:10.1371/journal.pone.0105626 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lin C-C, Potter CJ (2016) Editing transgenic DNA components by inducible gene replacement in Drosophila melanogaster. Genetics. doi:10.1534/genetics.116.191783 Google Scholar
  95. Lin C-C, Prokop-Prigge KA, Preti G, Potter CJ (2015) Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. Elife. doi:10.7554/eLife.08688 Google Scholar
  96. Lin H-H, Chu L-A, Fu T-F et al (2013a) Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science 340:1338–1341. doi:10.1126/science.1236693 PubMedCrossRefGoogle Scholar
  97. Lin JY, Knutsen PM, Muller A et al (2013b) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508. doi:10.1038/nn.3502 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436. doi:10.1016/j.neuron.2006.08.028 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Luan H, Diao F, Peabody NC, White BH (2012) Command and compensation in a neuromodulatory decision network. J Neurosci 32:880–889. doi:10.1523/JNEUROSCI.3707-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399. doi:10.1038/nn.2492 PubMedCrossRefGoogle Scholar
  101. Mann K, Gordon MD, Scott K (2013) A pair of interneurons influences the choice between feeding and locomotion in Drosophila. Neuron 79:754–765. doi:10.1016/j.neuron.2013.06.018 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Marella S, Mann K, Scott K (2012) Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73:941–950. doi:10.1016/j.neuron.2011.12.032 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Markstein M, Pitsouli C, Villalta C et al (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40:476–483. doi:10.1038/ng.101 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Masek P, Keene AC (2016) Gustatory processing and taste memory in Drosophila. J Neurogenet 30:112–121. doi:10.1080/01677063.2016.1185104 PubMedCrossRefGoogle Scholar
  105. Masuyama KK, Zhang YY, Rao YY, Wang JWJ (2012) Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 26:89–102. doi:10.3109/01677063.2011.642910 PubMedPubMedCentralCrossRefGoogle Scholar
  106. McKellar CE (2016) Motor control of fly feeding. J Neurogenet 30:101–111. doi:10.1080/01677063.2016.1177047 PubMedCrossRefGoogle Scholar
  107. Mellert DJ, Truman JW (2012) Transvection is common throughout the Drosophila genome. Genetics 191:1129–1141. doi:10.1534/genetics.112.140475 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mendes CS, Bartos I, Akay T et al (2013) Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. Elife 2:e00231. doi:10.7554/eLife.00231 PubMedPubMedCentralGoogle Scholar
  109. Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci 112:E2967–E2976. doi:10.1073/pnas.1506763112 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ni J-Q, Liu L-P, Binari R et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100. doi:10.1534/genetics.109.103630 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nicolas G, Sillans D (1989) Immediate and latent effects of carbon dioxide on insects. Annu Rev Entomol 34:97–116CrossRefGoogle Scholar
  112. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci 84:9123PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ohyama T, Schneider-Mizell CM, Fetter RD et al (2015) A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520:633–639. doi:10.1038/nature14297 PubMedCrossRefGoogle Scholar
  114. Owald D, Lin S, Waddell S (2015) Light, heat, action: neural control of fruit fly behaviour. Philos Trans R Soc B. doi:10.1098/rstb.2014.0211 Google Scholar
  115. Pan Y, Meissner GW, Baker BS (2012) Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc Natl Acad Sci U S A 109:10065–10070. doi:10.1073/pnas.1207107109 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Parisky KM, Agosto J, Pulver SR et al (2008) PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60:672–682. doi:10.1016/j.neuron.2008.10.042 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. doi:10.1126/science.1074952 PubMedCrossRefGoogle Scholar
  118. Pavlou HJ, Goodwin SF (2013) Courtship behavior in Drosophila melanogaster: towards a “courtship connectome”. Curr Opin Neurobiol 23:76–83. doi:10.1016/j.conb.2012.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Peabody NC, Pohl JB, Diao F et al (2009) Characterization of the decision network for wing expansion in Drosophila using targeted expression of the TRPM8 channel. J Neurosci 29:3343–3353. doi:10.1523/JNEUROSCI.4241-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Peng H, Chung P, Long F et al (2011) BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods 8:493–498. doi:10.1038/nmeth.1602 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562. doi:10.1146/annurev-ento-120811-153631 PubMedCrossRefGoogle Scholar
  122. Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci 105:9715–9720. doi:10.1073/pnas.0803697105 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Pfeiffer BD, Ngo T-TB, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755. doi:10.1534/genetics.110.119917 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pool A-H, Kvello P, Mann K et al (2014) Four GABAergic interneurons impose feeding restraint in Drosophila. Neuron 83:164–177. doi:10.1016/j.neuron.2014.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548. doi:10.1016/j.cell.2010.02.025 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Pulver SR, Pashkovski SL, Hornstein NJ et al (2009) Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101:3075–3088. doi:10.1152/jn.00071.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pulver SR, Hornstein NJ, Land BL, Johnson BR (2011) Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila. Adv Physiol Educ 35:82–91. doi:10.1152/advan.00125.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ramdya P, Lichocki P, Cruchet S et al (2014) Mechanosensory interactions drive collective behaviour in Drosophila. Nature. doi:10.1038/nature14024 PubMedPubMedCentralGoogle Scholar
  129. Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2:e354. doi:10.1371/journal.pone.0000354 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rezával C, Pavlou HJ, Dornan AJ et al (2012) Neural circuitry underlying Drosophila female postmating behavioral responses. Curr Biol 22:1155–1165. doi:10.1016/j.cub.2012.04.062 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Riabinina O, Luginbuhl D, Marr E et al (2015) Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 12:219–222, 5 p following 222. doi:10.1038/nmeth.3250
  132. Robie AA, Straw AD, Dickinson MH (2010) Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception. J Exp Biol 213:2494–2506. doi:10.1242/jeb.041749 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Root CM, Ko KI, Jafari A, Wang JW (2011) Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145:133–144. doi:10.1016/j.cell.2011.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ruta V, Datta SR, Vasconcelos ML et al (2010) A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468:686–690. doi:10.1038/nature09554 PubMedCrossRefGoogle Scholar
  135. Saalfeld S, Cardona A, Hartenstein V, Tomancak P (2009) CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25:1984–1986. doi:10.1093/bioinformatics/btp266 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Saleem S, Ruggles PH, Abbott WK, Carney GE (2014) Sexual experience enhances Drosophila melanogaster male mating behavior and success. PLoS ONE 9:e96639. doi:10.1371/journal.pone.0096639 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. Elife. doi:10.7554/eLife.12059 Google Scholar
  138. Schusterreiter C, Grossmann W (2013) A two-fly tracker that solves occlusions by dynamic programming: computational analysis of Drosophila courtship behaviour. EURASIP J Image Video Process 2013:64. doi:10.1214/aoms/1177698950 CrossRefGoogle Scholar
  139. Seeds AM, Ravbar P, Chung P et al (2014) A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. Elife 3:e02951PubMedPubMedCentralCrossRefGoogle Scholar
  140. Seelig JD, Chiappe ME, Lott GK et al (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540. doi:10.1038/nmeth.1468 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Seiger MB, Kink JF (1993) The effect of anesthesia on the photoresponses of four sympatric species of Drosophila. Behav Genet 23:99–104PubMedCrossRefGoogle Scholar
  142. Shang Y, Griffith LC, Rosbash M (2008) Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci 105:19587–19594. doi:10.1073/pnas.0809577105 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Shirangi TR, Wong AM, Truman JW, Stern DL (2016) Doublesex regulates the connectivity of a neural circuit controlling Drosophila male courtship song. Dev Cell 37:533–544. doi:10.1016/j.devcel.2016.05.012 PubMedCrossRefGoogle Scholar
  144. Simon JC, Dickinson MH (2010) A new chamber for studying the behavior of Drosophila. PLoS ONE 5:e8793. doi:10.1371/journal.pone.0008793 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sivanantharajah L, Zhang B (2015) Current techniques for high-resolution mapping of behavioral circuits in Drosophila. J Comp Physiol A 201:895–909. doi:10.1007/s00359-015-1010-y CrossRefGoogle Scholar
  146. Spradling AC, Stern D, Beaton A et al (1999) The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153:135–177PubMedPubMedCentralGoogle Scholar
  147. Stockinger P, Kvitsiani D, Rotkopf S et al (2005) Neural circuitry that governs Drosophila Male Courtship Behavior. Cell 121:795–807. doi:10.1016/j.cell.2005.04.026 PubMedCrossRefGoogle Scholar
  148. Straw AD, Branson K, Neumann TR, Dickinson MH (2011) Multi-camera real-time three-dimensional tracking of multiple flying animals. J R Soc Interface 8:395–409. doi:10.1098/rsif.2010.0230 PubMedCrossRefGoogle Scholar
  149. Suh GSB, Wong AM, Hergarden AC et al (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859. doi:10.1038/nature02980 PubMedCrossRefGoogle Scholar
  150. Suh GSB, Ben-Tabou de Leon S, Tanimoto H et al (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17:905–908. doi:10.1016/j.cub.2007.04.046 PubMedCrossRefGoogle Scholar
  151. Sun F, Wang Y, Zhou Y et al (2014) Identification of neurons responsible for feeding behavior in the Drosophila brain. Sci China Life Sci 57:391–402. doi:10.1007/s11427-014-4641-2 PubMedCrossRefGoogle Scholar
  152. Suster ML, Seugnet L, Bate M, Sokolowski MB (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. genesis 39:240–245. doi:10.1002/gene.20051 PubMedCrossRefGoogle Scholar
  153. Takemura S-Y, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181. doi:10.1038/nature12450 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tataroglu O, Emery P (2014) Studying circadian rhythms in Drosophila melanogaster. Methods 68:140–150. doi:10.1016/j.ymeth.2014.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Ting C-Y, Gu S, Guttikonda S et al (2011) Focusing transgene expression in Drosophila by coupling Gal4 with a novel split-LexA expression system. Genetics 188:229–233. doi:10.1534/genetics.110.126193 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Triphan T, Nern A, Roberts SF et al (2016) A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons. Sci Rep 6:27000. doi:10.1038/srep27000 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tsai H-Y, Huang Y-W (2012) Image tracking study on courtship behavior of Drosophila. PLoS ONE 7:e34784. doi:10.1371/journal.pone.0034784 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tuthill JC, Wilson RI (2016) Parallel transformation of tactile signals in central circuits of Drosophila. Cell 164:1046–1059. doi:10.1016/j.cell.2016.01.014 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tuthill JC, Nern A, Holtz SL et al (2013) Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:128–140. doi:10.1016/j.neuron.2013.05.024 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ueda A, Kidokoro Y (2002) Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Physiol Entomol 27:21–28. doi:10.1046/j.1365-3032.2002.00262.x CrossRefGoogle Scholar
  161. van Breugel F, Dickinson MH (2014) Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr Biol 24:274–286. doi:10.1016/j.cub.2013.12.023 PubMedCrossRefGoogle Scholar
  162. Vaughan AG, Zhou C, Manoli DS, Baker BS (2014) Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Curr Biol 24:1039–1049. doi:10.1016/j.cub.2014.03.048 PubMedCrossRefGoogle Scholar
  163. Venken KJT, He Y, Hoskins RA, Bellen HJ (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751. doi:10.1126/science.1134426 PubMedCrossRefGoogle Scholar
  164. Venken KJT, Schulze KL, Haelterman NA et al (2011a) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743PubMedPubMedCentralCrossRefGoogle Scholar
  165. Venken KJT, Simpson JH, Bellen HJ (2011b) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230. doi:10.1016/j.neuron.2011.09.021 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Vinayak P, Coupar J, Hughes SE et al (2013) Exquisite light sensitivity of Drosophila melanogaster cryptochrome. PLoS Genet 9:e1003615. doi:10.1371/journal.pgen.1003615 PubMedPubMedCentralCrossRefGoogle Scholar
  167. von Philipsborn AC, Liu T, Yu JY et al (2011) Neuronal control of Drosophila courtship song. Neuron 69:509–522. doi:10.1016/j.neuron.2011.01.011 CrossRefGoogle Scholar
  168. von Reyn CR, Breads P, Peek MY et al (2014) A spike-timing mechanism for action selection. Nat Neurosci 17:962–970. doi:10.1038/nn.3741 CrossRefGoogle Scholar
  169. Wan Y, Otsuna H, Chien C-B, Hansen C (2012) FluoRender: an application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research. IEEE Pacific visualization symposium, pp 201–208Google Scholar
  170. Wang L, Anderson DJ (2010) Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463:227–231. doi:10.1038/nature08678 PubMedCrossRefGoogle Scholar
  171. Wang L, Dankert H, Perona P, Anderson DJ (2008) A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci 105:5657–5663. doi:10.1073/pnas.0801327105 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wang L, Han X, Mehren J et al (2011) Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci 14:757–762. doi:10.1038/nn.2800 PubMedPubMedCentralCrossRefGoogle Scholar
  173. White BH (2016) What genetic model organisms offer the study of behavior and neural circuits. J Neurogenet 30:54–61. doi:10.1080/01677063.2016.1177049 PubMedCrossRefGoogle Scholar
  174. Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci 36:217–241. doi:10.1146/annurev-neuro-062111-150533 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wu M-C, Chu L-A, Hsiao P-Y et al (2014) Optogenetic control of selective neural activity in multiple freely moving Drosophila adults. Proc Natl Acad Sci 111:5367–5372. doi:10.1073/pnas.1400997111 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yamaguchi S, Desplan C, Heisenberg M (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci 107:5634–5639. doi:10.1073/pnas.0809398107 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yoshihara M, Ito K (2000) Improved Gal4 screening kit for large-scale generation of enhancer-trap strains. Drosoph Inf Serv 83:199–202Google Scholar
  178. Yoshihara M, Ito K (2012) Acute genetic manipulation of neuronal activity for the functional dissection of neural circuits-a dream come true for the pioneers of behavioral genetics. J Neurogenet 26:43–52. doi:10.3109/01677063.2012.663429 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zaninovich OA, Kim SM, Root CR et al (2013) A single-fly assay for foraging behavior in Drosophila. J Visualized Exp e50801. doi:10.3791/50801
  180. Zawistowski S, Richmond RC (1987) Experience mediated reduction in courtship of Drosophila melanogaster in large and small chambers. J Comp Psychol 101:90–93CrossRefGoogle Scholar
  181. Zhou C, Franconville R, Vaughan AG et al (2015) Central neural circuitry mediating courtship song perception in male Drosophila. Elife. doi:10.7554/eLife.08477 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Janelia Research CampusHoward Hughes Medical InstituteAshburnUSA
  2. 2.Institute of NeurobiologyUniversity of Puerto Rico-Medical Sciences CampusSan JuanUSA

Personalised recommendations