Skip to main content

Recent Progress in the 3D Reconstruction of Drosophila Neural Circuits

  • Chapter
  • First Online:
Decoding Neural Circuit Structure and Function

Abstract

The brain of fruit fly Drosophila melanogaster has been used as a model system for functional analysis of neuronal circuits, including connectomics research, due to its modest size (~700 μm) and availability of abundant molecular genetics tools for visualizing neurons. Three-dimensional (3D) reconstruction of high-resolution images of neurons or circuits visualized with appropriate methods is a critical step for obtaining information such as morphology and connectivity patterns of neuronal circuits. In this chapter, we introduce methods for generating 3D reconstructed images with data acquired from confocal laser scanning microscopy (CLSM) or electron microscopy (EM) to analyze neuronal circuits found in the central nervous system (CNS) of the fruit fly. Comparisons of different algorithms and strategies for reconstructing neuronal circuits, using actual studies as references, will be discussed within this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3:e04577. doi:10.7554/eLife.04577

    PubMed  PubMed Central  Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178(3):477–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    Google Scholar 

  • Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7(6):e38011. doi:10.1371/journal.pone.0038011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chklovskii DB, Vitaladevuni S, Scheffer LK (2010) Semi-automated reconstruction of neural circuits using electron microscopy. Curr Opin Neurobiol 20(5):667–675. doi:10.1016/j.conb.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11):e329. doi:10.1371/journal.pbio.0020329

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedrich RW, Genoud C, Wanner AA (2013) Analyzing the structure and function of neuronal circuits in zebrafish. Front Neural Circuits 7:71. doi:10.3389/fncir.2013.00071

    Article  PubMed  PubMed Central  Google Scholar 

  • Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A, Nose A (2016) A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 5:e13253

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Zeitschrift für Naturforschung B 11(9–10):513–524

    Google Scholar 

  • Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DG, Lichtman JW (2014) Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circ 8:68. doi:10.3389/fncir.2014.00068

    Google Scholar 

  • Hayworth KJ, Xu CS, Lu Z, Knott GW, Fetter RD, Tapia JC, Lichtman JW, Hess HF (2015) Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat Methods 12(4):319–322. doi:10.1038/nmeth.3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ (2015) Even-skipped(+) interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude. Neuron 88(2):314–329. doi:10.1016/j.neuron.2015.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmstaedter M, Briggman KL, Denk W (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14(8):1081–1088. doi:10.1038/nn.2868

    Article  CAS  PubMed  Google Scholar 

  • Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461):168–174. doi:10.1038/nature12346

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Nunez-Iglesias J, Vitaladevuni S, Scheffer L, Xu S, Bolorizadeh M, Hess H, Fetter R, Chklovskii D (2013) Electron microscopy reconstruction of brain structure using sparse representations over learned dictionaries. IEEE Trans Med Imaging. doi:10.1109/TMI.2013.2276018

    Google Scholar 

  • Huang GB, Plaza S (2014) Identifying synapses using deep and wide multiscale recursive networks. arXiv preprint arXiv:14091789

  • Ito K, Awasaki T (2008) Clonal unit architecture of the adult fly brain. Adv Exp Med Biol 628:137–158. doi:10.1007/978-0-387-78261-4_9

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149(1):134–148

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, Harzsch S, Heisenberg M, Homberg U, Jenett A, Keshishian H, Restifo LL, Rossler W, Simpson JH, Strausfeld NJ, Strauss R, Vosshall LB, Insect Brain Name Working G (2014) A systematic nomenclature for the insect brain. Neuron 81(4):755–765. doi:10.1016/j.neuron.2013.12.017

  • Ito K, Urban J, Technau G (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux’s Arch Dev Biol 204(5):284–307. doi:10.1007/BF02179499

    Article  Google Scholar 

  • Ito M, Masuda N, Shinomiya K, Endo K, Ito K (2013) Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr Biol 23(8):644–655. doi:10.1016/j.cub.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  • Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N, Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, Enos A, Hulamm P, Lam SC, Li HH, Laverty TR, Long F, Qu L, Murphy SD, Rokicki K, Safford T, Shaw K, Simpson JH, Sowell A, Tae S, Yu Y, Zugates CT (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2(4):991–1001. doi:10.1016/j.celrep.2012.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499(3):317–356. doi:10.1002/cne.21075

    Article  PubMed  Google Scholar 

  • Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vazquez-Reina A, Kaynig V, Jones TR, Roberts M, Morgan JL, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661. doi:10.1016/j.cell.2015.06.054

    Article  CAS  PubMed  Google Scholar 

  • Kim MD, Wen Y, Jan YN (2009) Patterning and organization of motor neuron dendrites in the Drosophila larva. Dev Biol 336(2):213–221. doi:10.1016/j.ydbio.2009.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreshuk A, Straehle CN, Sommer C, Koethe U, Cantoni M, Knott G, Hamprecht FA (2011) Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS One 6(10):e24899. doi:10.1371/journal.pone.0024899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61(12):1305–1316

    Article  CAS  Google Scholar 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451–461

    Article  CAS  PubMed  Google Scholar 

  • Lin TY, Luo J, Shinomiya K, Ting CY, Lu Z, Meinertzhagen IA, Lee CH (2016) Mapping chromatic pathways in the Drosophila visual system. J Comp Neurol 524(2):213–227. doi:10.1002/cne.23857

    Article  CAS  PubMed  Google Scholar 

  • Maack N (2008) 3D reconstruction of neural circuits from serial EM images. Dissertation, LMU Munich, Munich, Germany

    Google Scholar 

  • Macke JH, Maack N, Gupta R, Denk W, Scholkopf B, Borst A (2008) Contour-propagation algorithms for semi-automated reconstruction of neural processes. J Neurosci Methods 167(2):349–357. doi:10.1016/j.jneumeth.2007.07.021

    Article  PubMed  Google Scholar 

  • Marin EC, Watts RJ, Tanaka NK, Ito K, Luo L (2005) Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132(4):725–737. doi:10.1242/dev.01614

    Article  CAS  PubMed  Google Scholar 

  • Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148. doi:10.1038/nbt.2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinertzhagen IA (1996) Ultrastructure and quantification of synapses in the insect nervous system. J Neurosci Methods 69(1):59–73. doi:10.1016/S0165-0270(96)00021-0

    Article  CAS  PubMed  Google Scholar 

  • Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305(2):232–263. doi:10.1002/cne.903050206

    Article  CAS  PubMed  Google Scholar 

  • Mizutani R, Saiga R, Takeuchi A, Uesugi K, Suzuki Y (2013) Three-dimensional network of Drosophila brain hemisphere. J Struct Biol 184(2):271–279. doi:10.1016/j.jsb.2013.08.012

    Article  PubMed  Google Scholar 

  • Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M (2015) A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520(7549):633–639. doi:10.1038/nature14297

    Article  CAS  PubMed  Google Scholar 

  • Olbris DJ, Plaza SM (2016) Fly EM: Raveler, https://openwiki.janelia.org/wiki/display/flyem/Raveler

  • Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497(6):928–958. doi:10.1002/cne.21015

    Article  PubMed  Google Scholar 

  • Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. doi:10.1534/genetics.110.119917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Doring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Moller OS, Muller CH, Rieger V, Rothe BH, Stegner ME, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29. doi:10.1186/1742-9994-7-29

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera-Alba M, Vitaladevuni SN, Mishchenko Y, Lu Z, Takemura SY, Scheffer L, Meinertzhagen IA, Chklovskii DB, de Polavieja GG (2011) Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr Biol 21(23):2000–2005. doi:10.1016/j.cub.2011.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlfing T, Maurer CR Jr (2003) Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Trans Inf Technol Biomed 7(1):16–25

    Article  PubMed  Google Scholar 

  • Saalfeld S, Cardona A, Hartenstein V, Tomancak P (2009) CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25(15):1984–1986. doi:10.1093/bioinformatics/btp266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalek R, Kasthuri N, Hayworth K, Berger D, Tapia J, Morgan J, Turaga S, Fagerholm E, Seung H, Lichtman J (2011) Development of high-throughput, high-resolution 3D reconstruction of large-volume biological tissue using automated tape collection ultramicrotomy and scanning electron microscopy. Microsc Microanal 17(S2):966–967

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A (2016) Quantitative neuroanatomy for connectomics in Drosophila. eLife 5:e12059. doi:10.7554/eLife.12059

  • Shaw SR, Meinertzhagen IA (1986) Evolutionary progression at synaptic connections made by identified homologous neurones. Proc Natl Acad Sci U S A 83(20):7961–7965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinomiya K, Karuppudurai T, Lin TY, Lu Z, Lee CH, Meinertzhagen IA (2014) Candidate neural substrates for off-edge motion detection in Drosophila. Curr Biol 24(10):1062–1070. doi:10.1016/j.cub.2014.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemura S-y XuCS, Lu Z, Rivlin PK, Parag T, Olbris DJ, Plaza S, Zhao T, Katz WT, Umayam L, Weaver C, Hess HF, Horne JA, Nunez-Iglesias J, Aniceto R, Chang L-A, Lauchie S, Nasca A, Ogundeyi O, Sigmund C, Takemura S, Tran J, Langille C, Le Lacheur K, McLin S, Shinomiya A, Chklovskii DB, Meinertzhagen IA, Scheffer LK (2015) Synaptic circuits and their variations within different columns in the visual system of Drosophila. Proc Natl Acad Sci 112(44):13711–13716. doi:10.1073/pnas.1509820112

    Article  PubMed  PubMed Central  Google Scholar 

  • Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500(7461):175–181. doi:10.1038/nature12450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbach R, Technau GM (2003) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130(16):3621–3637

    Article  CAS  PubMed  Google Scholar 

  • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49(6):833–844. doi:10.1016/j.neuron.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Otsuna H, Chien CB, Hansen C (2009) An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Trans Vis Comput Graph 15(6):1489–1496. doi:10.1109/TVCG.2009.118

    Article  PubMed  PubMed Central  Google Scholar 

  • Wichmann C, Sigrist SJ (2010) The active zone T-bar–a plasticity module? J Neurogenet 24(3):133–145. doi:10.3109/01677063.2010.489626

    Article  CAS  PubMed  Google Scholar 

  • Wolff T, Iyer NA, Rubin GM (2015) Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J Comp Neurol 523(7):997–1037. doi:10.1002/cne.23705

    Article  PubMed  Google Scholar 

  • Yasuyama K, Meinertzhagen IA, Schurmann FW (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445(3):211–226

    Article  PubMed  Google Scholar 

  • Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, Kao JC, Wu GY, Peng H, Myers G, Lee T (2013) Clonal development and organization of the adult Drosophila central brain. Curr Biol 23(8):633–643. doi:10.1016/j.cub.2013.02.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Shinomiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shinomiya, K., Ito, M. (2017). Recent Progress in the 3D Reconstruction of Drosophila Neural Circuits. In: Çelik, A., Wernet, M. (eds) Decoding Neural Circuit Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-57363-2_3

Download citation

Publish with us

Policies and ethics