Advertisement

Perspective: A New Era of Comparative Connectomics

  • Ian A. MeinertzhagenEmail author
Chapter

Abstract

Morphological studies on brains have recently entered a new phase of circuit analysis identified under the newly designated area of connectomics, the study of brain wiring diagrams exact at synapse level that can now be produced by means of electron microscopy and automated reconstruction. The most comprehensive examples come from the brains of invertebrates with few neurons, which Nature provides in great abundance especially among marine larval invertebrates. Two complete examples, the nematode C. elegans and the larva of the ascidian Ciona intestinalis, are now published; others are in the pipeline. Each species has its advantages and champions, especially clearly so in Drosophila, which offers outstanding opportunities for functional analysis of complex behaviours using genetics-based methods. Collectively‚ these offer an ultimate prospect for the causal analysis of behaviour. In addition, the availability of multiple connectomes from behaviourally different species will reveal features of the network design that are common to all, and that enable comparison with networks from different levels of biological organization, as well as with those from networks that have evolved from human technologies.

Notes

Acknowledgments

The author acknowledges various sources of support for his work summarized in this review, especially grant DIS-0000065 from the Natural Sciences and Engineering Research Council, for research on the larval nervous system of Ciona, and the FlyEM team at the Janelia Research Campus of HHMI for work on Drosophila. Dr. Kerrianne Ryan read an earlier version of the manuscript.

References

  1. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523CrossRefPubMedGoogle Scholar
  2. Bezares-Calderón LA, Jékely G (2016) Think small. eLIFE 5. pii: e22497. doi: 10.7554/eLife.22497
  3. Borst A (2009) Drosophila’s view on insect vision. Curr Biol 19:R36–R47CrossRefPubMedGoogle Scholar
  4. Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306CrossRefPubMedGoogle Scholar
  5. Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:419–437CrossRefPubMedGoogle Scholar
  6. Bumbarger DJ, Riebesell M, Rödelsperger C, Sommer RJ (2013) System-wide rewiring underlies behavioral differences in predatory and bacterial-feeding nematodes. Cell 152:109–119CrossRefPubMedGoogle Scholar
  7. Butcher NJ, Friedrich AB, Lu Z, Tanimoto H, Meinertzhagen IA (2012) Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. J Comp Neurol 520:2185–2201CrossRefPubMedGoogle Scholar
  8. Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Chen YC, Wu CC, Chen GY, Ching YT, Lee PC, Lin CY, Lin HH, Wu CC, Hsu HW, Huang YA, Chen JY, Chiang HJ, Lu CF, Ni RF, Yeh CY, Hwang JK (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11. doi: 10.1016/j.cub.2010.11.056 CrossRefPubMedGoogle Scholar
  9. Denk W, Heinz H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. doi: 10.1371/journal.pbio.0020329 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL (2016) Species-specific wiring for direction selectivity in the mammalian retina. Nature 535:105–110CrossRefPubMedPubMedCentralGoogle Scholar
  11. Douglass JK, Strausfeld NJ (2003) Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc Res Tech 62:132–150CrossRefPubMedGoogle Scholar
  12. Durbin RM (1987) Studies on the development and organisation of the nervous system of Caernorhabditis elegans. Doctoral thesis, University of CambridgeGoogle Scholar
  13. Fahrenbach WH (1984) Continuous serial thin sectioning for electron microscopy. J Electron Microsc Techn 1:387–398CrossRefGoogle Scholar
  14. Fahrenbach WH (1985) Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus. Proc R Soc Lond B 225:219–249CrossRefPubMedGoogle Scholar
  15. Feng L, Zhao T, Kim J (2015) neuTube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro 2(1). pii: ENEURO.0049-14.2014Google Scholar
  16. Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tiss Res 258:441–475CrossRefGoogle Scholar
  17. Gao S, Takemura S-Y, Ting C-Y, Huang S, Lu Z, Luan H, Rister J, Yang M, Hong S-T, Wang JW, Odenwald W, White B, Meinertzhagen IA, Lee C-H (2008) Neural substrate of spectral discrimination in Drosophila. Neuron 60:328–342CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goldschmidt R (1908) Das Nervensystem von Ascaris lumbricoides und megalocephala, I. Z wissenschaftliche Zool 90:73–136Google Scholar
  19. Goldschmidt R (1909) Das Nervensystem von Ascaris lumbricoides und megalocephala, II. Z wissenschaftliche Zool 92:306–357Google Scholar
  20. Hale ME (2014) Mapping circuits beyond the models: integrating connectomics and comparative neuroscience. Neuron 83:1256–1258CrossRefPubMedGoogle Scholar
  21. Hall DH (1995) Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol 48:395–436CrossRefPubMedGoogle Scholar
  22. Harris KM, Perry E, Bourne J, Feinberg M, Ostroff L, Hurlburt J (2006) Uniform serial sectioning for transmission electron microscopy. J Neurosci 26:12101–12103CrossRefPubMedGoogle Scholar
  23. Hayworth KJ, Xu CS, Lu Z, Knott GW, Fetter RD, Tapia JC, Lichtman JW, Hess HF (2015) Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat Methods 12:319–322CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, BerlinCrossRefGoogle Scholar
  25. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174CrossRefPubMedGoogle Scholar
  26. Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, Thomson JN, Albertson DG, Hall DH, Emmons SW (2012) The connectome of a decision-making neural network. Science 337:437–444CrossRefPubMedGoogle Scholar
  27. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, Enos A, Hulamm P, Lam SC, Li HH, Laverty TR, Long F, Qu L, Murphy SD, Rokicki K, Safford T, Shaw K, Simpson JH, Sowell A, Tae S, Yu Y, Zugates CT (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2:991–1001CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jovanic T, Schneider-Mizell CM, Shao M, Masson JB, Denisov G, Fetter RD, Mensh BD, Truman JW, Cardona A, Zlatic M (2016) Competitive disinhibition mediates behavioral choice and sequences in Drosophila. Cell 167(858–870):e19. doi: 10.1016/j.cell.2016.09.009 Google Scholar
  29. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964CrossRefPubMedGoogle Scholar
  30. Knott G, Rosset S, Cantoni M (2011) Focussed ion beam milling and scanning electron microscopy of brain tissue. J Vis Exp 53:e2588. doi: 10.3791/2588 Google Scholar
  31. Lacalli TC (1984) Structure and organization of the nervous system in the trochophore larva of Spirobranchus. Philos Trans R Soc Lond B Biol Sci 306:79–135CrossRefGoogle Scholar
  32. Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 18:346–353CrossRefPubMedPubMedCentralGoogle Scholar
  33. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436CrossRefPubMedPubMedCentralGoogle Scholar
  34. Macagno ER, Lopresti V, Levinthal C (1973) Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. Proc Natl Acad Sci USA 70:57–61CrossRefPubMedPubMedCentralGoogle Scholar
  35. Meinertzhagen IA (2001) Plasticity in the insect nervous system. Adv Insect Physiol 28:84–167CrossRefGoogle Scholar
  36. Meinertzhagen IA (2014) The anatomical organization of the compound eye visual system. In: Dubnau J (ed) Handbook of behavior genetics of Drosophila melanogaster, vol 1. University Press, Cambridge, pp 1–19Google Scholar
  37. Meinertzhagen IA (2016a) Morphology of invertebrate neurons and synapses. In: Byrne JH (ed) Handbook of invertebrate neurobiology. Oxford University PressGoogle Scholar
  38. Meinertzhagen IA (2016b) Connectome studies on Drosophila: a short perspective on a tiny brain. J Neurogenet 30:62–68CrossRefPubMedGoogle Scholar
  39. Meinertzhagen IA, Lee C-H (2012) The genetic analysis of functional connectomics in Drosophila. Adv Genet 80:99–151PubMedPubMedCentralGoogle Scholar
  40. Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305:232–263CrossRefPubMedGoogle Scholar
  41. Meinertzhagen IA, Sorra KE (2001) Synaptic organisation in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Progr Brain Res 131:53–69CrossRefGoogle Scholar
  42. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827CrossRefPubMedGoogle Scholar
  43. Morgan JL, Lichtman JW (2013) Why not connectomics? Nat Methods 10:494–500CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M (2015) A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520:633–639CrossRefPubMedGoogle Scholar
  45. Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, Myers EW, Simpson JH (2011) BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods 8:493–500CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM (2008) Tools for neuroanatomy and neurogenetics in Drosophila. P Natl Acad Sci USA 105:9715-9720Google Scholar
  47. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755CrossRefPubMedPubMedCentralGoogle Scholar
  48. Randel N, Asadulina A, Bezares-Calderón LA, Verasztó C, Williams EA, Conzelmann M, Shahidi R, Jékely G (2014) Neuronal connectome of a sensory-motor circuit for visual navigation. eLIFE 3. doi: 10.7554/eLife.02730
  49. Randel N, Shahidi R, Verasztó C, Bezares-Calderón LA, Schmidt S, Jékely G (2015) Inter-individual stereotypy of the Platynereis larval visual connectome. eLIFE 4:e08069. doi: 10.7554/eLife.08069 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ryan K, Lu Z, Meinertzhagen IA (2016) The CNS connectome of a tadpole larva of Ciona intestinalis highlights sidedness in the brain of a chordate sibling. eLIFE 5:e16962Google Scholar
  51. Rybak J, Talarico G, Ruiz S, Arnold C, Cantera R, Hansson BS (2016) Synaptic circuitry of identified neurons in the antennal lobe of Drosophila melanogaster. J Comp Neurol 524:1920–1956CrossRefPubMedGoogle Scholar
  52. Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A (2016) Quantitative neuroanatomy for connectomics in Drosophila. eLIFE 5. pii: e12059Google Scholar
  53. Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, Wang TY, Lo CC, Greenspan RJ, Chiang AS (2015) Connectomics-based analysis of information flow in the Drosophila brain. Curr Biol 25:1249–1258CrossRefPubMedGoogle Scholar
  54. Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA (2014) Candidate neural substrates for off-edge motion detection in Drosophila. Curr Biol 24:1–9CrossRefGoogle Scholar
  55. Silies M, Gohl DM, Clandinin TR (2014) Motion-detecting circuits in flies: coming into view. Ann Rev Neurosci 37:307–327CrossRefPubMedGoogle Scholar
  56. Simpson JH (2009) Mapping and manipulating neural circuits in the fly brain. Adv Genet 65:79–143PubMedGoogle Scholar
  57. Sterling P, Laughlin S (2015) Principles of neural design. The MIT Press, LondonCrossRefGoogle Scholar
  58. Strausfeld NJ, Campos-Ortega JA (1977) Vision in insects: pathways underlying neural adaptation and lateral inhibition. Science 195:894–897CrossRefPubMedGoogle Scholar
  59. Strausfeld NJ, Nässel DR (1980) Neuroarchitectures serving compound eyes of Crustacea and insects. In: H Autrum (ed) Handbook of sensory physiology, vol VII/6B. Comparative physiology and evolution of vision in invertebrates. Springer, Berlin, pp 1–132Google Scholar
  60. Takemura S, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513CrossRefPubMedPubMedCentralGoogle Scholar
  61. Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang L-A, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181CrossRefPubMedPubMedCentralGoogle Scholar
  62. Takemura S, Xu CS, Lu Z, Rivlin PK, Olbris DJ, Parag T, Plaza S, Zhao T, Katz WT, Umayam L, Weaver C, Hess H, Horne JA, Nunez J, Aniceto R, Chang L-A, Lauchie S, Nasca A, Ogundeyi O, Sigmund C, Takemura S, Tran J, Langille C, Le Lacheur K, McLin S, Shinomiya A, Chklovskii DB, Meinertzhagen IA, Scheffer LK (2015) Multi-column synaptic circuits and an analysis of their variations in the visual system of Drosophila. Proc Natl Acad Sci USA 112:13711–13716Google Scholar
  63. Takemura S et al (2017a) EM reconstruction of α2 and α3 lobes of the mushroom body in adult Drosophila. eLIFE (submitted)Google Scholar
  64. Takemura S, Nern A, Plaza S, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA (2017b) The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. Elife (under review)Google Scholar
  65. Tobin W, Wilson R, Lee W-C (2017) Wiring variations that enable and constrain neural computation in a sensory microcircuit. eLIFE (submitted)Google Scholar
  66. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ware R (1971) Computer aided nerve tracing in the brain of the rotifier, Asplanchna brightwelli. Ph.D. thesis, Massachusetts Institute of Technology, Boston, 213 ppGoogle Scholar
  68. Ware RW, LoPresti V (1975) Three-dimensional reconstruction from serial sections. Int Rev Cytol 40:325–440CrossRefPubMedGoogle Scholar
  69. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMedGoogle Scholar
  70. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340CrossRefPubMedGoogle Scholar
  71. Windoffer R, Westheide W (1988) The nervous system of the male Dinophilus gyrociliatus (Polychaeta, Dinophilidae): II. Electron microscopical reconstruction of nervous anatomy and effector cells. J Comp Neurol 272:475–488CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Psychology and Neuroscience, Life Sciences CentreDalhousie UniversityHalifaxCanada
  2. 2.Department of Biology, Life Sciences CentreDalhousie UniversityHalifaxCanada
  3. 3.Howard Hughes Medical InstituteAshburnUSA
  4. 4.Life Sciences CentreDalhousie UniversityHalifaxCanada

Personalised recommendations