Skip to main content

A Worst-Case Analysis of Constraint-Based Algorithms for Exact Multi-objective Combinatorial Optimization

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10233)

Abstract

In a multi-objective combinatorial optimization (MOCO) problem, multiple objectives must be optimized simultaneously. In past years, several constraint-based algorithms have been proposed for finding Pareto-optimal solutions to MOCO problems that rely on repeated calls to a constraint solver. Understanding the properties of these algorithms and analyzing their performance is an important problem. Previous work has focused on empirical evaluations on benchmark instances. Such evaluations, while important, have their limitations. Our paper adopts a different, purely theoretical approach, which is based on characterizing the search space into subspaces and analyzing the worst-case performance of a MOCO algorithm in terms of the expected number of calls to the underlying constraint solver. We apply the approach to two important constraint-based MOCO algorithms. Our analysis reveals a deep connection between the search mechanism of a constraint solver and the exploration of the search space of a MOCO problem.

Keywords

  • Multi-objective Combinatorial Optimization (MOCO)
  • Constraint-based Algorithm
  • MOCO Problem
  • Underlying Constraint Solver
  • Pareto Optimal Solutions

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-57351-9_16
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-57351-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Notes

  1. 1.

    From here after, we use solution unqualified to refer to a feasible solution and Pareto-optimal solution to refer to an optimal solution to a MOCO instance.

  2. 2.

    Without loss of generality, we consider minimization problems.

References

  1. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer, Dordrecht (2001)

    CrossRef  MATH  Google Scholar 

  2. Bjørner, N., Phan, A.D.: \(\nu \)Z - maximal satisfaction with Z3. In: Proceedings of the SCSS, pp. 632–647 (2014)

    Google Scholar 

  3. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware sampling and weighted model counting for SAT. In: Proceedings of the AAAI, pp. 1722–1730 (2014)

    Google Scholar 

  4. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_40

    CrossRef  Google Scholar 

  5. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in sat witness generator. In: Proceedings of the DAC, pp. 1–6 (2014)

    Google Scholar 

  6. Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for constraint satisfaction problems. In: Proceedings of the AAAI, pp. 15–21 (2002)

    Google Scholar 

  7. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Gavanelli, M.: An algorithm for multi-criteria optimization in CSPs. In: Proceedings of the ECAI, pp. 136–140 (2002)

    Google Scholar 

  9. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of the AAAI, pp. 431–437 (1998)

    Google Scholar 

  10. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial spaces using XOR constraints. In: Proceedings of the NIPS, pp. 481–488 (2006)

    Google Scholar 

  11. Hartert, R., Schaus, P.: A support-based algorithm for the bi-objective pareto constraint. In: Proceedings of the AAAI, pp. 2674–2679 (2014)

    Google Scholar 

  12. Le Pape, C., Couronné, P., Vergamini, D., Gosselin, V.: Time-versus-capacity compromises in project scheduling. In: Proceedings of the Thirteenth Workshop of the UK Planning Special Interest Group, Strathclyde, UK (1994)

    Google Scholar 

  13. Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Solving multi-objective Pseudo-Boolean problems. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 56–69. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_9

    CrossRef  Google Scholar 

  14. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, Mineola (1998)

    MATH  Google Scholar 

  15. Rayside, D., Estler, H.C., Jackson, D.: The guided improvement algorithm for exact, general purpose, many-objective combinatorial optimization. Technical report, MIT-CSAIL-TR-2009-033 (2009)

    Google Scholar 

  16. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Sadeh, N., Fox, M.: Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem. Artif. Intell. 86(1), 1–41 (1996)

    CrossRef  Google Scholar 

  18. Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge (1989)

    Google Scholar 

  20. van Wassenhove, L., Gelders, L.: Solving a bicriterion scheduling problem. Eur. J. Oper. Res. 4(1), 42–48 (1980)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by Shanghai Municipal Natural Science Foundation (No. 17ZR1406900) and NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmei Guo or Peter van Beek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guo, J., Blais, E., Czarnecki, K., van Beek, P. (2017). A Worst-Case Analysis of Constraint-Based Algorithms for Exact Multi-objective Combinatorial Optimization. In: Mouhoub, M., Langlais, P. (eds) Advances in Artificial Intelligence. Canadian AI 2017. Lecture Notes in Computer Science(), vol 10233. Springer, Cham. https://doi.org/10.1007/978-3-319-57351-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57351-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57350-2

  • Online ISBN: 978-3-319-57351-9

  • eBook Packages: Computer ScienceComputer Science (R0)