Skip to main content

Climbing Down the Hierarchy: Hierarchical Classification for Machine Learning Side-Channel Attacks

Part of the Lecture Notes in Computer Science book series (LNSC,volume 10239)

Abstract

Machine learning techniques represent a powerful paradigm in side-channel analysis, but they come with a price. Selecting the appropriate algorithm as well as the parameters can sometimes be a difficult task. Nevertheless, the results obtained usually justify such an effort. However, a large part of those results use simplification of the data relation and in fact do not consider allthe available information. In this paper, we analyze the hierarchical relation between the data and propose a novel hierarchical classification approach for side-channel analysis. With this technique, we are able to introduce two new attacks for machine learning side-channel analysis: Hierarchical attack and Structured attack. Our results show that both attacks can outperform machine learning techniques using the traditional approach as well as the template attack regarding accuracy. To support our claims, we give extensive experimental results and discuss the necessary conditions to conduct such attacks.

Keywords

  • Side-channel attacks
  • Profiled scenario
  • Machine learning techniques
  • Hierarchical classification
  • Hierarchical attack
  • Structured attack

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-57339-7_4
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-57339-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    Note that, an attacker could reveal the secret key with only one trace if it corresponds to HW 0 or 8, which occurs with a probability of \(\frac{2}{256}\).

  2. 2.

    For simplicity we assume that one key chunk is of the same size as one intermediate state chunk, however, this study can easily be extended for other scenarios as given e.g. in DES.

  3. 3.

    See e.g., in the hall of fame on [10].

References

  1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_3

    CrossRef  Google Scholar 

  2. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). doi:10.1007/11545262_3

    CrossRef  Google Scholar 

  3. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Second International Workshop on Constructive SideChannel Analysis and Secure Design, Center for Advanced Security Research Darmstadt, pp. 29–41 (2011)

    Google Scholar 

  4. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptographic Eng. 1, 293–302 (2011). doi:10.1007/s13389-011-0023-x

    CrossRef  Google Scholar 

  5. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29912-4_18

    CrossRef  Google Scholar 

  6. Lerman, L., Bontempi, G., Markowitch, O.: The bias-variance decomposition in profiled attacks. J. Cryptographic Eng. 5(4), 255–267 (2015)

    CrossRef  Google Scholar 

  7. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. IJACT 3(2), 97–115 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). doi:10.1007/978-3-319-08302-5_5

    Google Scholar 

  9. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6_23

    CrossRef  Google Scholar 

  10. TELECOM ParisTech SEN research group: DPA Contest. 2nd edn. (2009–2010). http://www.DPAcontest.org/v2/

  11. Xilinx: Virtex-5 libraries guide for HDL designs. http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex5_hdl.pdf

  12. TELECOM ParisTech SEN research group: DPA Contest. 4th edn. (2013–2014). http://www.DPAcontest.org/v4/

  13. de Almendra Freitas, C.O., Oliveira, L.S., Aires, S.B.K., Bortolozzi, F.: Metaclasses and zoning mechanism applied to handwriting recognition. J. UCS 14(2), 211–223 (2008)

    Google Scholar 

  14. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2), 131–163 (1997)

    CrossRef  MATH  Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  16. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Shavlik, J. (ed.) Fifteenth International Conference on Machine Learning, pp. 144–151. Morgan Kaufmann (1998)

    Google Scholar 

  17. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    CrossRef  Google Scholar 

  18. Kuncheva, L.I., Rodríguez, J.J.: An experimental study on rotation forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 459–468. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72523-7_46

    CrossRef  Google Scholar 

  19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    CrossRef  MATH  Google Scholar 

  20. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press (1998)

    Google Scholar 

  21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    CrossRef  Google Scholar 

  22. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation (2007)

    Google Scholar 

  23. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4_2

    CrossRef  Google Scholar 

  24. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). doi:10.1007/978-3-319-08302-5_17

    Google Scholar 

  25. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_1

    CrossRef  Google Scholar 

Download references

Acknowledgments

S. Picek was supported in part by Croatian Science Foundation under the project IP-2014-09-4882.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stjepan Picek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Picek, S., Heuser, A., Jovic, A., Legay, A. (2017). Climbing Down the Hierarchy: Hierarchical Classification for Machine Learning Side-Channel Attacks. In: Joye, M., Nitaj, A. (eds) Progress in Cryptology - AFRICACRYPT 2017. AFRICACRYPT 2017. Lecture Notes in Computer Science(), vol 10239. Springer, Cham. https://doi.org/10.1007/978-3-319-57339-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57339-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57338-0

  • Online ISBN: 978-3-319-57339-7

  • eBook Packages: Computer ScienceComputer Science (R0)