Climbing Down the Hierarchy: Hierarchical Classification for Machine Learning Side-Channel Attacks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)


Machine learning techniques represent a powerful paradigm in side-channel analysis, but they come with a price. Selecting the appropriate algorithm as well as the parameters can sometimes be a difficult task. Nevertheless, the results obtained usually justify such an effort. However, a large part of those results use simplification of the data relation and in fact do not consider allthe available information. In this paper, we analyze the hierarchical relation between the data and propose a novel hierarchical classification approach for side-channel analysis. With this technique, we are able to introduce two new attacks for machine learning side-channel analysis: Hierarchical attack and Structured attack. Our results show that both attacks can outperform machine learning techniques using the traditional approach as well as the template attack regarding accuracy. To support our claims, we give extensive experimental results and discuss the necessary conditions to conduct such attacks.


Side-channel attacks Profiled scenario Machine learning techniques Hierarchical classification Hierarchical attack Structured attack 



S. Picek was supported in part by Croatian Science Foundation under the project IP-2014-09-4882.


  1. 1.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi: 10.1007/3-540-36400-5_3 CrossRefGoogle Scholar
  2. 2.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). doi: 10.1007/11545262_3 CrossRefGoogle Scholar
  3. 3.
    Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Second International Workshop on Constructive SideChannel Analysis and Secure Design, Center for Advanced Security Research Darmstadt, pp. 29–41 (2011)Google Scholar
  4. 4.
    Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptographic Eng. 1, 293–302 (2011). doi: 10.1007/s13389-011-0023-x CrossRefGoogle Scholar
  5. 5.
    Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29912-4_18 CrossRefGoogle Scholar
  6. 6.
    Lerman, L., Bontempi, G., Markowitch, O.: The bias-variance decomposition in profiled attacks. J. Cryptographic Eng. 5(4), 255–267 (2015)CrossRefGoogle Scholar
  7. 7.
    Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. IJACT 3(2), 97–115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). doi: 10.1007/978-3-319-08302-5_5 Google Scholar
  9. 9.
    Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27954-6_23 CrossRefGoogle Scholar
  10. 10.
    TELECOM ParisTech SEN research group: DPA Contest. 2nd edn. (2009–2010).
  11. 11.
  12. 12.
    TELECOM ParisTech SEN research group: DPA Contest. 4th edn. (2013–2014).
  13. 13.
    de Almendra Freitas, C.O., Oliveira, L.S., Aires, S.B.K., Bortolozzi, F.: Metaclasses and zoning mechanism applied to handwriting recognition. J. UCS 14(2), 211–223 (2008)Google Scholar
  14. 14.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2), 131–163 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  16. 16.
    Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Shavlik, J. (ed.) Fifteenth International Conference on Machine Learning, pp. 144–151. Morgan Kaufmann (1998)Google Scholar
  17. 17.
    Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)CrossRefGoogle Scholar
  18. 18.
    Kuncheva, L.I., Rodríguez, J.J.: An experimental study on rotation forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 459–468. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72523-7_46 CrossRefGoogle Scholar
  19. 19.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press (1998)Google Scholar
  21. 21.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  22. 22.
    Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation (2007)Google Scholar
  23. 23.
    Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). doi: 10.1007/978-3-319-21476-4_2 CrossRefGoogle Scholar
  24. 24.
    Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). doi: 10.1007/978-3-319-08302-5_17 Google Scholar
  25. 25.
    Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48324-4_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KU Leuven ESAT/COSIC and imecLeuven-HeverleeBelgium
  2. 2.IRISA/CNRSRennesFrance
  3. 3.University of Zagreb, Faculty of Electrical Engineering and ComputingZagrebCroatia
  4. 4.IRISA/InriaRennesFrance

Personalised recommendations