Skip to main content

Large-Scale Batteries for Green Energy Society

  • Chapter
  • First Online:
Electrochemical Science for a Sustainable Society

Abstract

An extensive demand for rechargeable batteries from environmental problems due to CO2 emission was described in the introduction. Then, general information about several kinds of batteries for energy storage and electric vehicle applications are described. Specially, lead acid battery, lithium ion battery, sodium-sulfur battery, and redox-flow battery have been discussed based on electrochemical reactions occurring in the practical cells. The energy density of each battery was also discussed in detail based on not only material sciences but also battery technologies. In the future, higher energy density is strongly required for future rechargeable batteries. In the final section, research and development of next generation batteries are involved in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263

    Article  CAS  Google Scholar 

  2. Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721–11750

    Article  CAS  Google Scholar 

  3. Huang S, Cui Z, Zhao N, Sun J, Guo X (2016) Influence of ambient air on cell reactions of Li-air batteries. Electrochim Acta 191:473–478

    Article  CAS  Google Scholar 

  4. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  5. Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46:1135–1143

    Article  CAS  Google Scholar 

  6. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200

    Article  CAS  Google Scholar 

  7. Ogasawara Y, Hibino M, Kobayashi H, Kudo T, Asakura D, Nanba Y, Hosono E, Nagamura N, Kitada Y, Honma I, Oshima M, Okuoka S, Ono H, Yonehara K, Sumida Y, Mizuno N (2015) Charge/discharge mechanism of a new Co-doped Li2O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy. J Power Sources 287:220–225

    Article  CAS  Google Scholar 

  8. Imanishi M, Yamamoto O (2014) Rechargeable lithium-air batteries: characteristics and prospects. Mater Today 17:24–30

    Article  CAS  Google Scholar 

  9. Moreno N, Caballero A, Morales J, Rodriguez-Castellon E (2016) Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO2 for advanced Li-S batteries. J Power Sources 313:21–29

    Article  CAS  Google Scholar 

  10. Kambe Y, Esaki K, Ishiguro Y, Inagaki A, Nozaki K, Enokishima H, Okayama S, Matsuura T, Muramatsu H, Yamada M, Kojima H (2003) Development of lithium-ion battery for vehicles. In: Abstracts of the spring conference for society of automotive engineers of Japan, Inc., March 2003, No. 19-03, p 21

    Google Scholar 

  11. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  12. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  13. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  14. Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K (2009) Electrochemical kinetics and safety of 2-Volt class Li-ion battery system using lithium titanium oxide anode. J Electrochem Soc 156:A128–A132

    Article  CAS  Google Scholar 

  15. Leveau L, Laik B, Pereira-Ramos JP, Gohier A, Tran-Van P, Cojocaru CS (2016) Silicon nano-trees as high areal capacity anodes for lithium-ion batteries. J Power Sources 316:1–7

    Article  CAS  Google Scholar 

  16. Rozier P, Tarascon JM (2015) Review—Li-rich layered oxide cathodes for next-generation Li-Ion batteries: chances and challenges. J Electrochem Soc 162:A2490–A2499

    Article  CAS  Google Scholar 

  17. Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100:117–124

    Article  CAS  Google Scholar 

  18. Liu Y, Pan H, Gao M, Wang Q (2011) Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem 21:4743–4755

    Article  CAS  Google Scholar 

  19. Oshima T, Kajita M, Okuno A (2004) Development of sodium-sulfur batteries. Appl Ceram Tech 1:269–276

    Article  CAS  Google Scholar 

  20. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  21. Kanamura K, Munakata H, Yong C (2011) Lithium secondary battery separator and method of manufacturing same. JP Patent WO2013084368 A1, 9 Dec 2011

    Google Scholar 

  22. Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196:7048–7055

    Article  CAS  Google Scholar 

  23. Mizuno F, Takechi K, Higashi S, Shiga T, Shiotsuki T, Takazawa N, Sakurabayashi Y, Okazaki S, Nitta I, Kodama T, Nakamoto H, Nishikoori H, Nakanishi S, Kotani Y, Iba H (2013) Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent. J Power Sources 228:47–56

    Article  CAS  Google Scholar 

  24. Lee M, Hwang Y, Yun K-H, Chung Y-C (2016) Cathode reaction mechanism on the h-BN/Ni (111) heterostructure for the lithium-oxygen battery. J Power Sources 307:379–384

    Article  CAS  Google Scholar 

  25. Zheng D, Zhang X, Wang J, Qu D, Yang X, Qu D (2016) Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide. J Power Sources 301:312–316

    Article  CAS  Google Scholar 

  26. Diao Y, Xie K, Xiong S, Hong X (2013) Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li-S battery. J Power Source 235:181–186

    Article  CAS  Google Scholar 

  27. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium—O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  28. Manthiram A, Fu Y, Chung SH, Zu C, Su YH (2014) Rechargeable lithium sulfur batteries. Chem Rev 114:11751–11787

    Article  CAS  Google Scholar 

  29. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969–A1976

    Article  CAS  Google Scholar 

  30. Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56:6055–6059

    Article  CAS  Google Scholar 

  31. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  32. Kato T, Iwasaki S, Ishii Y, Motoyama M, West CW, Yamamoto Y, Iriyama Y (2016) Preparation of thick-film electrode-solid electrolyte composites Li7La3Zr2O12 and their electrochemical properties. J Power Sources 303:65–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kanamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kanamura, K. (2017). Large-Scale Batteries for Green Energy Society. In: Uosaki, K. (eds) Electrochemical Science for a Sustainable Society. Springer, Cham. https://doi.org/10.1007/978-3-319-57310-6_7

Download citation

Publish with us

Policies and ethics