Skip to main content

Methodology and Structure Adaptation Algorithm for Complex Technical Objects Reconfiguration Models

  • Conference paper
  • First Online:
Cybernetics and Mathematics Applications in Intelligent Systems (CSOC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 574))

Included in the following conference series:

Abstract

Complex-technical object (CTO) is the main object of investigation. In the paper are shown how the problem of CTO functional reconfiguration can be sovled in the terms of proposed CTO structural dynamics control theory. General formal description of CTO structure-dynamics control (SDC) including its functional reconfiguration is suggested. New approach to structure adaptation of CTO functional reconfiguration models is developted. This approach is based on concept of integrated modeling and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okhtilev, M.Y., Sokolov, B.V., Yusupov, R.M.: Intellectual Technologies of Monitoring and Controlling the Dynamics of Complex Technical Objects. Nauka, Moskva, 409 p. (2006)

    Google Scholar 

  2. Silhavy, R., Senkerik, R., Oplatkova, Z.K., Prokopova, Z., Silhavy, P. (eds.): Intelligent Systems in Cybernetics and Automation Theory. AISC, vol. 348. Springer, Cham (2015). doi:10.1007/978-3-319-18503-3

    Google Scholar 

  3. Skurikhin, V.I., Zabrodskii, V.A., Kopeichenko, Y.: Adaptive Control Systems for Manufacturing. Mashinostroenie, Moscow (1989)

    Google Scholar 

  4. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev., 45, 167–256 (2003). Peregudov, F.I., Tarrasenko, F.P.: Introduction to Systems Analysis. Vysshaya Shkola, Moscow (1989)

    Google Scholar 

  5. Van der Velde, W.E. Control System Reconfiguration. In: Proceedings of American Control Conference 1984, vol. 3, pp. 1741–1745 (1984)

    Google Scholar 

  6. Arnott, D.: Decision support systems evolution: framework, case study and research agenda. Eur. J. Inf. Syst. 13(4), 247–259 (2004)

    Article  Google Scholar 

  7. http://www.liophant.org/scsc

  8. http://www.scs.org

  9. http://www.wintersim.org

  10. http://www.simulation.su

  11. Michalevich, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 387 p. Springer, Heidelberg (1996)

    Google Scholar 

  12. Glover, F., Kochenberger, G.: Handbook of Metaheuristics, 570 p. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  13. FIPA Agent Management System. http://www.fipa.org/specs/fipa00023/XC00023H.html

  14. Wooldridge, M.: An Introduction to Multi-agent Systems. Wiley, New York (2002)

    Google Scholar 

  15. Ivanov, D., Sokolov, B., Pavlov, A.: Dual problem formulation and its application to optimal redesign of an integrated production–distribution network with structure dynamics and ripple effect considerations. Int. J. Prod. Res. 51(18), 5386–5403 (2013)

    Article  Google Scholar 

  16. Zaden, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)

    Article  MathSciNet  Google Scholar 

  17. Saaty, T.L.: Theory and application of the analytical network process. RWS, Pittsburg (2005)

    Google Scholar 

  18. Alabyan, A.M., Krylenko, I.N., Potryasaev, S.A., Sokolov, B.V., Yusupov, R.M., Zelentsov, V.A.: Development of intelligent information systems for operational river-flood forecasting. Herald Russ. Acad. Sci. 86(1), 24–33 (2016)

    Google Scholar 

Download references

Acknowledgements

The research described in this paper is partially supported by the Russian Foundation for Basic Research (grants 15-07-08391, 15-08-08459, 16-07-00779, 16-08-00510, 16-08-01277, 16-29-09482-ofi-i, 17-08-00797, 17-06-00108, 17-01-00139, 17-20-01214), grant 074-U01 (ITMO University), project 6.1.1 (Peter the Great St.Petersburg Politechnic University) supported by Government of Russian Federation, Program STC of Union State “Monitoring-SG” (project 1.4.1-1), state order of the Ministry of Education and Science of the Russian Federation №2.3135.2017/K, state research 0073–2014–0009, 0073–2015–0007, International project ERASMUS +, Capacity building in higher education, № 73751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, Innovative teaching and learning strategies in open modelling and simulation environment for student-centered engineering education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Pashchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pashchenko, A., Okhtilev, P., Potrysaev, S., Ipatov, Y., Sokolov, B. (2017). Methodology and Structure Adaptation Algorithm for Complex Technical Objects Reconfiguration Models. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Cybernetics and Mathematics Applications in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-57264-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57264-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57263-5

  • Online ISBN: 978-3-319-57264-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics