Advertisement

Implementation of Synthetic Aperture Radar and Geoinformation Technologies in the Complex Monitoring and Managing of the Mining Industry Objects

  • Maria R. Ponomarenko
  • Ilya Yu. Pimanov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 574)

Abstract

Design, planning and management of opencast and underground mining require safety control of mining operations. Geodynamic monitoring of mining areas is necessary for operational forecasting and prevention of dangerous deformation processes. The identification of geodynamic active zones and forecasting of geodynamic risks are based on systematic observations of the surface and mining facilities. A promising method of obtaining timely spatial information to solve the problems mentioned is the satellite radar imagery. The integration of radar products and intelligent information systems improves the efficiency and accuracy of data analysis. The paper presents the methods of radar image processing in order to conduct comprehensive monitoring of the Earth’s surface and infrastructure in mining enterprises. For efficient use of thematic processing products the results were placed on the web server in the information-analytical system “RegionView” providing distributed access to spatial data through the web interface and standard protocols.

Keywords

Synthetic aperture radar Earth surface monitoring Interferometry Geoinformation systems Temporal data model Web cartography 

Notes

Acknowledgments

The research described in this paper is partially supported by the Russian Foundation for Basic Research (grants 15-08-08459,16-07-000925, 16-08-00510, 17-08-00797, 17-06-00108, 17-01-00139), supported by Government of Russian Federation, Program STC of Union State “Monitoring-SG” (project 1.4.1-1), state order of the Ministry of Education and Science of the Russian Federation №2.3135.2017/K, state research 0073–2014–0009, 0073–2015–0007.

References

  1. 1.
    Odijk, D., Kenselaar, F., Hanssen, R.: Integration of leveling and InSAR data for land subsidence monitoring. In: Proceedings 11th FIG Symposium, Santorini, Greece (2003)Google Scholar
  2. 2.
    Ogundare, J.O.: Precision Surveying: The Principles and Geomatics Practice. John Wiley & Sons, Inc., Hoboken (2015)CrossRefGoogle Scholar
  3. 3.
    Kashnikov, Y.A., Musikhin, V.V., Lyskov, I.A.: Radar interferometry-based determination of ground surface subsidence under mineral mining. J. Min. Sci. 48, 649–655 (2012)CrossRefGoogle Scholar
  4. 4.
    Paradella, W.R., Ferretti, A., Mura, J.C., Colombo, D., Gama, F.F., Tamburini, A., Santos, A.R., Novali, F., Galo, M., Camargo, P.O., Silva, A.Q., Silva, G.G., Silva, A., Gomes, L.L.: Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 193, 61–78 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, G., Cheng, X., Chen, W., Li, X., Chen, L.: GPS-based slope monitoring systems and their applications in transition mining from open-pit to underground. Int. J. Min. Min. Eng. 5(2), 152–163 (2014)CrossRefGoogle Scholar
  6. 6.
    Panzhin, A.A., Panzhina, N.A.: Satellite geodesy-aided geodynamic monitoring in mineral mining in the Urals. J. Min. Sci. 48, 982–989 (2012)CrossRefGoogle Scholar
  7. 7.
    Mazzanti, P.: Remote monitoring of deformation. an overview of the seven methods described in previous GINs. Geotech. Instrum. 30, 24–29 (2012)Google Scholar
  8. 8.
    Hanssen, R.F.: Radar Interferometry: Data Interpretation and Error Analysis, 308 p. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  9. 9.
    Rheault, M., Bouroubi, Y., Sarago, V., Nguyen-Xuan, P.T., Bugnet, P., Gosselin, C., Benoit, M.: Integrated SAR technologies for monitoring the stability of mine sites: application using TerraSAR-X and RADARSAT-2 Images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-7/W3, 1057–1062 (2015)CrossRefGoogle Scholar
  10. 10.
    Crosetto, M.: Calibration and validation of SAR interferometry for DEM generation. ISPRS J. Photogramm. Remote Sens. 57(3), 213–227 (2002)CrossRefGoogle Scholar
  11. 11.
    Mirzaee, S., Motagh, M., Arefi, H.: Assessment of referance height models on quality of TanDEM-X DEM. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-1-W5, 463–466 (2015)CrossRefGoogle Scholar
  12. 12.
    Wegmuller, U., Walter, D., Spreckels, V., Werner, C.L.: Nonuniform ground motion monitoring with TerraSAR-X persistent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 48(2), 895–904 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Wang, C., Tang, Y.: Subsidence monitoring in coal area using timeseries InSAR combining persistent scatterers and distributed scatterers. Int. J. Appl. Earth Obs. Geoinf. 39, 49–55 (2015)CrossRefGoogle Scholar
  14. 14.
    Jiang, L., Lin, H., Ma, J., Kong, B., Wang, Y.: Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens. Environ. 115, 257–268 (2012)CrossRefGoogle Scholar
  15. 15.
    Du, Z., Ge, L., Li, X., Ng, A.H.-M.: Subsidence monitoring over the Southern Coalfield, Australia using both L-Band and C-Band SAR time series analysis. Remote Sens. 8, 543 (2016)CrossRefGoogle Scholar
  16. 16.
    Ponomarenko, M.R., Pimanov, I.Yu.: Processing of SAR amplitude images with posting the results on web server. J. Sib. Fed. Univ. Eng. Technol. 9(7), 994–1000 (2016). doi: 10.17516/1999-494X-2016-9-7-994-1000 CrossRefGoogle Scholar
  17. 17.
    Merkuryeva, G., Merkuryev, Y., Sokolov, B.V., Potryasaev, S., Zelentsov, V.A., Lektauers, A.: Advanced river flood monitoring, modelling and forecasting. J. Comput. Sci. 10, 77–85 (2015). doi: 10.1016/j.jocs.2014.10.004 CrossRefGoogle Scholar
  18. 18.
    Sokolov, B.V., Zelentsov, V.A., Brovkina, O., et al.: Intelligent integrated decision support systems for territory management. Artif. Intell. Perspect. Appl. 347, 321–331 (2015). doi: 10.1007/978-3-319-18476-0_32 Google Scholar
  19. 19.
    Zelentsov, V.A., Krylenko, I.N., Pimanov, I.Yu., Potryasaev, S.A., Sokolov, B.V., Akhtman, Y.: Bases of construction of the remote sensing data processing, storage and visualization system based on service-oriented architecture. Izv. vuzov Pribiristroenie. 58(3), 241–243 (2015) doi: 10.17586/0021-3454-2015-58-3-241-243
  20. 20.
    Mochalov, V.F., Markov, A.V., Grigorieva, O.V., Zhukov, D.V., Brovkina, O.V., Pimanov, I.Yu.: Remote sensing for environmental monitoring. complex modeling. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Automation Control Theory Perspectives in Intelligent Systems. AISC, vol. 466, pp. 497–506. Springer, Cham (2016). doi: 10.1007/978-3-319-33389-2_47 CrossRefGoogle Scholar
  21. 21.
    Zelentsov, V.A., Potryasaev, S.A., Pimanov, I.J., Nemykin, S.A.: Creation of intelligent information flood forecasting systems based on service oriented architecture. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Automation Control Theory Perspectives in Intelligent Systems. AISC, vol. 466, pp. 371–381. Springer, Cham (2016). doi: 10.1007/978-3-319-33389-2_35 CrossRefGoogle Scholar
  22. 22.
    Meyer, F.J., McAlpin, D.B., Gong, W., Ajadi, O., Arko, S., Webley, P.W., Dehn, J.: Integrating SAR and derived products into operational volcano monitoring and decision support systems. ISPRS J. Photogramm. Remote Sens. 100, 106–117 (2015)CrossRefGoogle Scholar
  23. 23.
    Hannemann, W., Brock, T., Busch, W.: GIS for combined storage and analysis of data from terrestrial and synthetic aperture radar remote sensing deformation measurements in hard coal mining. Int. J. Coal Geol. 86, 54–57 (2011)CrossRefGoogle Scholar
  24. 24.
    Shanjun, M., Qiaoxi, L., Mei, L.: Design and development of safety production management information system based on a digital coalmine. Procedia Earth Planet. 1(1), 1121–1127 (2009)CrossRefGoogle Scholar
  25. 25.
    Blachowski, J.B., Milczarek, W., Stefaniak, P.: Deformation information system for facilitating studies of mining-ground deformations, development, and applications. Nat. Hazards Earth Syst. Sci. 14, 1677–1689 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.St. Petersburg Mining UniversitySaint PetersburgRussia
  2. 2.St. Petersburg Institute of Informatics and AutomationRussian Academy of ScienceSaint PetersburgRussia

Personalised recommendations