Skip to main content

Synthesis Production Schedules Based on Ant Colony Optimization Method

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 573)

Abstract

It is proposed to use ant algorithms together with the object-oriented simulation models. To optimize the functioning of the automated technological complex machining together with a modified ant algorithm it is designed object model, which allows to calculate the fitness function and evaluate potential solutions. The transition and calculation of the concentration for synthetic pheromone rules are determined for supposed directed ant algorithms.

Keywords

  • Natural computing
  • Ant colony algorithm
  • Production schedules component
  • Flexible manufacturing systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-57261-1_45
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-57261-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Skobtsov, Y., Sekirin, A., Zemlyanskaya, S., Chengar, O., Skobtsov, V., Potryasaev, S.: Application of object-oriented simulation in evolutionary algorithms. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Automation Control Theory Perspectives in Intelligent Systems. AISC, vol. 466, pp. 453–462. Springer, Cham (2016). doi:10.1007/978-3-319-33389-2_43

    CrossRef  Google Scholar 

  2. Chengar, O.V.: Development of the “directed” ant algorithm to optimize production schedules. Bull. Kherson Nat. Tech. Univ. 1(46), 212–217 (2013). (in Russian). ISBN 5-7763-2514-5-Kherson

    Google Scholar 

  3. Chengar, O.V.: Graph analytical model of flexible manufacturing modules download automated machine-building enterprise. J. East Ukrainian Nat. Univ. 13(167), 239–245 (2011). Chenhar, O.V., Savkova, E.O., Lugansk

    Google Scholar 

  4. Skobtsov, Y.A., Speransky, D.V.: Evolutionary Computation: Hand Book. The National Open University “INTUIT”, Moscow, 331 p. (2015). (in Russian)

    Google Scholar 

  5. Dorigo, M.: Swarm intelligence, ant algorithms and ant colony optimization. Reader for CEU Summer University Course «Complex System», pp. 1–34. Central European University, Budapest (2001)

    Google Scholar 

Download references

Acknowledgments

The research described in this paper is partially supported by the Russian Foundation for Basic Research (grants 15-07-08391, 15-08-08459, 16-07-00779, 16-08-00510, 16-08-01277, 16-29-09482-ofi-i, 17-08-00797, 17-06-00108, 17-01-00139, 17-20-01214), grant 074-U01 (ITMO University), project 6.1.1 (Peter the Great St.Petersburg Polytechnic University) supported by Government of Russian Federation, Program STC of Union State “Monitoring-SG” (project 1.4.1-1, project 6MCГ/13-224-2), state order of the Ministry of Education and Science of the Russian Federation № 2.3135.2017/K, state research 0073–2014–0009, 0073–2015–0007, International project ERASMUS +, Capacity building in higher education, № 73751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, Innovative teaching and learning strategies in open modelling and simulation environment for student-centered engineering education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Skobtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Skobtsov, Y., Chengar, O., Skobtsov, V., Pavlov, A.N. (2017). Synthesis Production Schedules Based on Ant Colony Optimization Method. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57261-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57260-4

  • Online ISBN: 978-3-319-57261-1

  • eBook Packages: EngineeringEngineering (R0)