Advertisement

Synthesis Production Schedules Based on Ant Colony Optimization Method

  • Yuriy Skobtsov
  • Olga Chengar
  • Vadim SkobtsovEmail author
  • Alexander N. Pavlov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 573)

Abstract

It is proposed to use ant algorithms together with the object-oriented simulation models. To optimize the functioning of the automated technological complex machining together with a modified ant algorithm it is designed object model, which allows to calculate the fitness function and evaluate potential solutions. The transition and calculation of the concentration for synthetic pheromone rules are determined for supposed directed ant algorithms.

Keywords

Natural computing Ant colony algorithm Production schedules component Flexible manufacturing systems 

Notes

Acknowledgments

The research described in this paper is partially supported by the Russian Foundation for Basic Research (grants 15-07-08391, 15-08-08459, 16-07-00779, 16-08-00510, 16-08-01277, 16-29-09482-ofi-i, 17-08-00797, 17-06-00108, 17-01-00139, 17-20-01214), grant 074-U01 (ITMO University), project 6.1.1 (Peter the Great St.Petersburg Polytechnic University) supported by Government of Russian Federation, Program STC of Union State “Monitoring-SG” (project 1.4.1-1, project 6MCГ/13-224-2), state order of the Ministry of Education and Science of the Russian Federation № 2.3135.2017/K, state research 0073–2014–0009, 0073–2015–0007, International project ERASMUS +, Capacity building in higher education, № 73751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, Innovative teaching and learning strategies in open modelling and simulation environment for student-centered engineering education.

References

  1. 1.
    Skobtsov, Y., Sekirin, A., Zemlyanskaya, S., Chengar, O., Skobtsov, V., Potryasaev, S.: Application of object-oriented simulation in evolutionary algorithms. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Automation Control Theory Perspectives in Intelligent Systems. AISC, vol. 466, pp. 453–462. Springer, Cham (2016). doi: 10.1007/978-3-319-33389-2_43 CrossRefGoogle Scholar
  2. 2.
    Chengar, O.V.: Development of the “directed” ant algorithm to optimize production schedules. Bull. Kherson Nat. Tech. Univ. 1(46), 212–217 (2013). (in Russian). ISBN 5-7763-2514-5-KhersonGoogle Scholar
  3. 3.
    Chengar, O.V.: Graph analytical model of flexible manufacturing modules download automated machine-building enterprise. J. East Ukrainian Nat. Univ. 13(167), 239–245 (2011). Chenhar, O.V., Savkova, E.O., LuganskGoogle Scholar
  4. 4.
    Skobtsov, Y.A., Speransky, D.V.: Evolutionary Computation: Hand Book. The National Open University “INTUIT”, Moscow, 331 p. (2015). (in Russian)Google Scholar
  5. 5.
    Dorigo, M.: Swarm intelligence, ant algorithms and ant colony optimization. Reader for CEU Summer University Course «Complex System», pp. 1–34. Central European University, Budapest (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuriy Skobtsov
    • 1
  • Olga Chengar
    • 2
  • Vadim Skobtsov
    • 3
    Email author
  • Alexander N. Pavlov
    • 4
    • 5
  1. 1.St. Petersburg State National Research Polytechnic UniversitySt. PetersburgRussia
  2. 2.Federal Public Autonomous Educational Institution of the Higher Education Sevastopol State UniversitySevastopolRussian Federation
  3. 3.United Institute of Informatics Problems of National Academy of Sciences of BelarusMinskBelarus
  4. 4.Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO)St. PetersburgRussia
  5. 5.Mozhaisky Military Space AcademySt. PetersburgRussia

Personalised recommendations