Advertisement

A Case Study on Flat Rate Estimation Based on Fuzzy Logic

  • Kazi Kowshin Raihana
  • Fayezah Anjum
  • Abu Saleh Mohammed Shoaib
  • Md. Abdullah Ibne Hossain
  • M. Alimuzzaman
  • Rashedur M. Rahman
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 573)

Abstract

The main objective of this research is to develop a system based on fuzzy logic to estimate flat rent in Bangladesh. The data set consists of 63 individual flats in different blocks of Bashundhara Residential Area, Dhaka, Bangladesh. A number of factors influence the decision of a tenant to rent a flat. Since it is not desirable to work with a large number of variables, we used one of the dimensionality reduction techniques, known as Principle Component Analysis (PCA). PCA helps in reducing the number of variables from the set of data, as well keeping hold the most of the variability in data. This paper describes the implementation of an adaptive neuro-fuzzy inference system (ANFIS)-based approach to estimate the rent of the flat. The Sugeno ANFIS model is proposed in order to develop a systematized approach of generating fuzzy rules and membership function parameters for fuzzy sets from a given set of input and output data.

Keywords

Principle Component Analysis (PCA) Adaptive Neuro-Fuzzy Inference System (ANFIS) Fuzzy logic Rent estimation system Scatter plot Sugeno type model 

References

  1. 1.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Giudici, P.: Applied Data Mining: Statistical Methods for Business and Industry. Wiley, Chichester (2003)zbMATHGoogle Scholar
  3. 3.
    Principal component analysis (PCA) on data - MATLAB princomp (2017). https://www.mathworks.com/help/stats/princomp.html. Accessed 10 Jan 2017
  4. 4.
    Stepnowski, A., Mosynski, M., Dung, T.V.: Adaptive neuro-fuzzy and fuzzy decision tree classifiers as applied seafloor characterization. Acoust. Phys. 49(2), 189–192 (2003)CrossRefGoogle Scholar
  5. 5.
    Guan, J., Zurada, J., Levitan, A.S.: An adaptive neuro-fuzzy inference system-based approach to real estate property assessment. J. Real Estate Res. (JRER) 30(4), 396–421 (2008). pages.jh.edu/jrer/papers/pdf/past/vol30n04/01.395_422.pdf
  6. 6.
    Kafi, A.H., Kazemipoor, H., Afshar Kazem, A.M.: Design and implementation of fuzzy expert system for real estate recommendation. Int. J. Inf. Secur. Syst. Manag. (IJISSM) 2(1), 142–147 (2013). http://www.ijissm.org/article_7443.html

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kazi Kowshin Raihana
    • 1
  • Fayezah Anjum
    • 1
  • Abu Saleh Mohammed Shoaib
    • 1
  • Md. Abdullah Ibne Hossain
    • 1
  • M. Alimuzzaman
    • 1
  • Rashedur M. Rahman
    • 1
  1. 1.Department of Electrical and Computer EngineeringNorth South UniversityDhakaBangladesh

Personalised recommendations