Advertisement

Forecasting of Convective Precipitation Through NWP Models and Algorithm of Storms Prediction

  • David ŠaurEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 573)

Abstract

This article focuses on contemporary possibilities of forecasting of convective storms which may cause flash floods. The first chapters are presented predictive tools such as numerical weather prediction models (NWP models) and the algorithm of convective storms prediction, which includes a storm prediction based on the principles of mathematical statistics, probability theory and artificial intelligence methods. Discussion section provides outputs from the success rate of these forecasting tools on the historical weather situation for the year 2016. The Algorithm’s output may be useful for early warning of population and notification of crisis management authorities before a potential threat of flash floods in the Zlin Region.

Keywords

Weather forecast Convective precipitation Flash floods Crisis management Early warning Artificial intelligence 

Notes

Acknowledgments

This work was supported by the Internal Grant Agency of Tomas Bata University under the project No. IGA/FAI/2017/019 “Information Support of Crisis Management at the Regional Level”.

References

  1. 1.
    Březková, L., Šálek, M., Novák, P., Kyznarová, H., Jonov, M.: New methods of flash flood forecasting in the Czech Republic. In: IFIP Advances in Information and Communication Technology, AICT, vol. 359, pp. 550–557 (2011). doi: 10.1007/978-3-642-22285-6_59
  2. 2.
    Zdenek, S., Dusan, V., Jan, S., Ivan, M., Miroslav, M.: Protection from flash floods. In: Proceedings of the 26th International Business Information Management Association Conference - Innovation Management and Sustainable Economic Competitive Advantage: From Regional Development to Global Growth, IBIMA 2015, pp. 1359–1363 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976391745&partnerID=40&md5=923aa2f309578593d8b5e2cc503d02de
  3. 3.
    Hardy, J., Gourley, J.J., Kirstetter, P.-E., Hong, Y., Kong, F., Flamig, Z.L.: A method for probabilistic flash flood forecasting. J. Hydrol. 541, 480–494 (2016). doi: 10.1016/j.jhydrol.2016.04.007 CrossRefGoogle Scholar
  4. 4.
    Šaur D.: The Methodology Uses of Meteorological Radar of the Zlin Region for Crisis Management. Zlin, Czech Republic (2016)Google Scholar
  5. 5.
    Ravazzani, G., Amengual, A., Ceppi, A., Homar, V., Romero, R., Lombardi, G., Mancini, M.: Potentialities of ensemble strategies for flood forecasting over the Milano Urban Area. J. Hydrol. 539, 237–253 (2016). doi: 10.1016/j.jhydrol.2016.05.023 CrossRefGoogle Scholar
  6. 6.
    Jolivet, S., Chane-Ming, F.: WRF modelling of turbulence triggering convective thunderstorms over Singapore. In: Deville, M., Estivalezes, J.L., Gleize, V., Lê, T.H., Terracol, M., Vincent, S. (eds.) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 125, pp. 115–122. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43489-5_14 Google Scholar
  7. 7.
    Novák, P.: The Czech Hydrometeorological Institute’s Severe Storm Nowcasting System. doi: 10.1016/j.atmosres.2005.09.014
  8. 8.
    Liechti, K., Panziera, L., Germann, U., Zappa, M.: The potential of radar-based ensemble forecasts for flash flood early warning in the Southern Swiss Alps. Hydrol. Earth Syst. Sci. 17(10), 3853–3869 (2013). doi: 10.5194/hess-17-3853-2013 CrossRefGoogle Scholar
  9. 9.
    Lakshmanan, V., Crockett, J., Sperow, K., Ba, M., Xin, L.: Tuning AutoNowcaster automatically. Weather and Forecast. 27(6), 1568–1579 (2012). doi: 10.1175/WAF-D-11-00141.1 CrossRefGoogle Scholar
  10. 10.
    Haiden, T., Steinheimer, M.: Improved Nowcasting of precipitation based on convective analysis fields. In: Precipitation: Advances in Measurement, Estimation and Prediction, pp. 389–417 (2008). doi: 10.1007/978-3-540-77655-0_15
  11. 11.
    Beheshti, Z., Firouzi, M., Shamsuddin, S.M., Zibarzani, M., Yusop, Z.: A new rainfall forecasting model using the CAPSO algorithm and an artificial neural network. Neural Comput. Appl. 27(8), 2551–2565 (2016). doi: 10.1007/s00521-015-2024-7 CrossRefGoogle Scholar
  12. 12.
    Young, C.-C., Liu, W.-C., Chung, C.-E.: Genetic algorithm and fuzzy neural networks combined with the hydrological modeling system for forecasting watershed runoff discharge. Neural Comput. Appl. 26(7), 1631–1643 (2015). doi: 10.1007/s00521-015-1832-0 CrossRefGoogle Scholar
  13. 13.
    Chai, S.S., Wong, W.K., Goh, K.L.: Backpropagation vs. radial basis function neural model: rainfall intensity classification for flood prediction using meteorology data. J. Comput. Sci. 12(4), 191–200 (2016). doi: 10.3844/jcssp.2016.191.200 CrossRefGoogle Scholar
  14. 14.
    Meteorological Explanatory and Terminology Dictionary (EMS). Czech Meteorological Society (CMES), Prague. http://slovnik.cmes.cz
  15. 15.
    Batka, M.: Projections for the Development Atmosphere by Objective Methods. Prague, Czech Republic. http://kfa.mff.cuni.cz/wp-content/uploads/2015/03/kniha.pdf
  16. 16.
  17. 17.
    Šaur, D.: Comparison of success rate of numerical weather prediction models with forecasting system of convective precipitation. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 307–319. Springer, Cham (2016). doi: 10.1007/978-3-319-33625-1_28 CrossRefGoogle Scholar
  18. 18.
    Šaur, D., Ďuricová, L.: Comprehensive system of intense convective precipitation forecasts for regional crisis management. In: The Tenth International Conference on Emerging Security Information, System and Technologies, SECURWARE 2016, IARIA, 24–28 July 2016, pp. 111-116 (2016). ISBN 978-1-64208-493-0Google Scholar
  19. 19.
  20. 20.
    Biological Algorithms (5) – Neural Networks: Learning – Backpropagation. https://www.root.cz/clanky/biologicke-algoritmy-5-neuronove-site/
  21. 21.
  22. 22.
    An Introducton to Neural Networks: Back-propagation. https://www.ibm.com/developerworks/library/l-neural/
  23. 23.
    Zacharov P.: Diagnostic and Prognostic Precursors of Convection. Faculty of Mathematics and Physics UK, KMOP, p. 61, Prague (2004). https://is.cuni.cz/webapps/zzp/detail/44489/
  24. 24.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations