From Molecule to Market

  • John Coates
  • Mark Gurnell
  • Zoltan Sarnyai


Little is known about the role of the endocrine system in financial decision-making. Here, we survey research on steroid hormones and their cognitive effects, and examine potential links to trader performance in the financial markets. Preliminary findings suggest that cortisol codes for risk and testosterone for reward. A key finding of this endocrine research is the different cognitive effects of acute versus chronic exposure to hormones: acutely elevated steroids may optimize performance on a range of tasks; but chronically elevated steroids may promote irrational risk-reward choices. We present a hypothesis suggesting that the irrational exuberance and pessimism observed during market bubbles and crashes may be mediated by steroid hormones. If hormones can exaggerate market moves, then perhaps the age and sex composition among traders and asset managers may affect the level of instability witnessed in the financial markets.


  1. Andrew, R. (1991). The development and integration of behaviour. In P. Bateson (Ed.), Essays in honour of Robert Hinde (pp. 171–190). Cambridge, UK: Cambridge University Press.Google Scholar
  2. Andrew, R., & Rogers, L. (1972). Testosterone, search behaviour and persistence. Nature, 237, 343–346.CrossRefGoogle Scholar
  3. Apicella, C., Dreber, A., Campbell, B., Gray, P., Hoffman, M., & Little, A. (2008). Testosterone and financial risk preferences. Evolution and Human Behavior, 29, 384–390.CrossRefGoogle Scholar
  4. Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience and Biobehavioral Reviews, 30, 319–345.CrossRefGoogle Scholar
  5. Archer, J., Birring, S., & Wu, F. (1998). The association between testosterone and aggression among young men: Empirical findings and a meta-analysis. Aggressive Behavior, 24, 411–420.CrossRefGoogle Scholar
  6. Baulieu, E. (1997). Neurosteroids: Of the nervous system, by the nervous system, for the nervous system. Recent Progress in Hormone Research, 52, 1–32.Google Scholar
  7. Beletsky, L., Gori, D., Freeman, S., & Wingfield, J. (1995). Testosterone and polygyny in birds. Current Ornithology, 12, 141.Google Scholar
  8. Bernhardt, P. C., Dabbs, J., Fielden, J., & Lutter, C. (1998). Changes in testosterone levels during vicarious experiences of winning and losing among fans at sporting events. Physiology & Behavior, 65, 59–62.CrossRefGoogle Scholar
  9. Bhasin, S., et al. (2001). Testosterone dose-response relationships in healthy young men. American Journal of Physiology. Endocrinology and Metabolism, 281, 1172–1181.Google Scholar
  10. Blume, L., & Easley, D. (2006). If you are so smart why aren’t you rich? Belief selection in complete and incomplete markets. Econometrica, 74, 929–966.CrossRefGoogle Scholar
  11. Boissy, A., & Bouissou, M. (1994). Effects of androgen treatment on behavioural and physiological responses of heifers to fear-eliciting situations. Hormones and Behavior, 28, 66–83.CrossRefGoogle Scholar
  12. Booth, A., Shelley, G., Mazur, A., Tharp, G., & Kittok, R. (1989). Testosterone, and winning and losing in human competition. Hormones and Behavior, 23, 556–571.CrossRefGoogle Scholar
  13. Booth, A., Johnson, D., & Granger, D. (1999). Testosterone and men’s health. Journal of Behavioral Medicine, 22, 1–19.CrossRefGoogle Scholar
  14. Breedlove, S., & Hampson, E. (2002). Behavioral endocrinology. In J. Becker, S. Breedlove, D. Crews, & M. McCarthy (Eds.), (2nd ed., pp. 75–114). Cambridge, MA: MIT Press.Google Scholar
  15. Breier, A., Albus, M., Pickar, D., Zahn, T. P., Wolkowitz, O. M., & Paul, S. M. (1987). Controllable and uncontrollable stress in humans: Alterations in mood and neuroendocrine and psychophysiological function. American Journal of Psychiatry, 144, 1419–1425.CrossRefGoogle Scholar
  16. Brown, W., Hines, M., Fane, B., & Breedlove, M. (2002). Masculinized finger length patterns in human males and females with congenital adrenal hyperplasia. Hormones and Behavior, 42, 380–386.CrossRefGoogle Scholar
  17. Buckingham, J. (1998). Stress and the hypothalamo-pituitary-immune axis. International Journal of Tissue Reactions, 20, 23–34.Google Scholar
  18. Burnham, T. (2007). High-testosterone men reject low ultimatum game offers. Proceedings of the Royal Society of London B: Biological Sciences, 274, 2327–2330.CrossRefGoogle Scholar
  19. Cabib, S., & Puglisi-Allegra, S. (1996). Different effects of repeated stressful experiences on mesocortical and meso-limbic dopamine metabolism. Neuroscience, 73, 375–380.CrossRefGoogle Scholar
  20. Caldu, X., & Dreher, J. (2007). Hormonal and genetic influences on processing reward and social information. Annals of the New York Academy of Sciences, 1118, 43–73.CrossRefGoogle Scholar
  21. Camerer, C., & Fehr, E. (2006). When does ‘economic man’ dominate social behavior? Science, 311, 47–52.CrossRefGoogle Scholar
  22. Chase, I. D., Bartolomeo, C., & Dugatkin, L. A. (1994). Aggressive interactions and inter-contest interval: How long do winners keep winning? Animal Behaviour, 48, 393–400.CrossRefGoogle Scholar
  23. Choy, K., de Visser, Y., & van den Buuse, M. (2009). The effect of ‘two-hit’ neonatal and young-adult stress on dopaminergic modulation of prepulse inhibition and dopamine receptor density. British Journal of Pharmacology, 156, 388–396.CrossRefGoogle Scholar
  24. Coates, J. M., & Herbert, J. (2008). Endogenous steroids and financial risk taking on a London trading floor. Proceedings of the National Academy of Sciences of the United States of America, 105, 6167–6172.CrossRefGoogle Scholar
  25. Coates, J. M., Gurnell, M., & Rustichini, A. (2009). Second-to-fourth digit ratio predicts success among high-frequency financial traders. Proceedings of the National Academy of Sciences of the United States of America, 106, 623–628.CrossRefGoogle Scholar
  26. Cohen-Bendahana, C., van de Beeka, C., & Berenbaum, S. (2005). Prenatal sex hormone effects on child and adult sex-typed behavior: Methods and findings. Neuroscience and Biobehavioral Reviews, 29, 353–384.CrossRefGoogle Scholar
  27. Conrad, C., Lupien, S., & McEwen, B. (1999). Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiology of Learning and Memory, 72, 39–46.CrossRefGoogle Scholar
  28. Corodimas, K., LeDoux, J., Gold, P., & Schulkin, J. (1994). Corticosterone potentiation of learned fear. Annals of the New York Academy of Sciences, 746, 392–393.CrossRefGoogle Scholar
  29. Daitzman, R., & Zuckerman, M. (1980). Disinhibitory sensation seeking, personality and gonadal hormones. Personality and Individual Differences, 1, 103–110.CrossRefGoogle Scholar
  30. Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and the human brain. New York, NY: Grosset/Putnam.Google Scholar
  31. De Bondt, W., & Thaler, R. (1987). Further evidence on investor overreaction and stock market seasonality. The Journal of Finance, 42, 557–581.CrossRefGoogle Scholar
  32. de Kloet, E. R. (2000). Stress in the brain. European Journal of Pharmacology, 405, 187–198.CrossRefGoogle Scholar
  33. de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., & Joels, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19, 269–301.Google Scholar
  34. De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. (2006). Frames, biases and rational decision-making in the human brain. Science, 313, 684–687.CrossRefGoogle Scholar
  35. Dreher, J.-C., Schmidt, P. J., Kohn, P., Furman, D., Rubinov, D., & Berman, K. F. (2007). Menstrual cycle phase modulates reward-related neural function in women. Proceedings of the National Academy of Sciences of the United States of America, 104, 2465–2470.CrossRefGoogle Scholar
  36. Dufty, A. M. (1989). Testosterone and survival: A cost of aggressiveness? Hormones and Behavior, 23, 185–193.CrossRefGoogle Scholar
  37. Dugatkin, L., & Druen, M. (2004). The social implications of winner and loser effects. Proceedings of the Royal Society of London B: Biological Sciences (Suppl.) 271, S488–S489.  Google Scholar
  38. Elias, M. (1981). Serum cortisol, testosterone, and testosterone-binding globulin responses to competitive fighting in human males. Aggressive Behavior, 7, 215–224.CrossRefGoogle Scholar
  39. Erikson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews, 27, 233–246.CrossRefGoogle Scholar
  40. Falkenstein, E., Tillmann, H., Christ, M., Feuring, M., & Wehling, M. (2000). Multiple actions of steroid hormones—A focus on rapid, nongenomic effects. Pharmacological Reviews, 52, 513–556.Google Scholar
  41. Falter, C., Arroyo, M., & Davis, G. (2006). Testosterone: Activation or organization of spatial cognition? Biological Psychology, 73, 132–140.CrossRefGoogle Scholar
  42. Frye, C., Rhodes, M., Rosellini, R., & Svare, B. (2002). The nucleus accumbens as a site of action for rewarding properties of testosterone and its 5alpha-reduced metabolites. Pharmacology Biochemistry and Behavior, 74, 119–127.CrossRefGoogle Scholar
  43. Funder, J. W. (1997). Glucocorticoid and mineralocorticoid receptors: Biology and clinical relevance. Annual Review of Medicine, 48, 224–231.CrossRefGoogle Scholar
  44. Gladue, B., Boechler, M., & McCaul, K. D. (1989). Hormonal response to competition in human males. Aggressive Behavior, 15, 409–422.CrossRefGoogle Scholar
  45. Gurnell, M., Burrin, J., & Chatterjee, K. (2017). Principles of hormone action. In D. Warrell, T. Cox & J. Firth (Eds.), Oxford textbook of medicine (5th ed.). Oxford: Oxford University Press.Google Scholar
  46. Hermans, E., Putman, P., Baas, J., Koppeschaar, H., & van Honk, J. (2006). A single administration of testosterone reduces fear-potentiated startle in humans. Biological Psychiatry, 59, 872–874.CrossRefGoogle Scholar
  47. Hsu, Y., & Wolf, L. (2001). The winner and loser effect: What fighting behaviours are influenced? Animal Behaviour, 61, 777–786.CrossRefGoogle Scholar
  48. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. (2005). Neural systems responding to uncertainty in human decision-making. Science, 310, 1680–1683.CrossRefGoogle Scholar
  49. Hurd, P. (2006). Resource holding potential, subjective resource value, and game theoretical models of aggressiveness signaling. Journal of Theoretical Biology, 241, 639–648.CrossRefGoogle Scholar
  50. Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6–41.CrossRefGoogle Scholar
  51. Kademian, S., Bignante, A., Lardone, P., McEwen, B., & Volosin, M. (2005). Biphasic effects of adrenal steroids on learned helplessness behavior induced by inescapable shock. Neuropsychopharm, 30, 58–66.CrossRefGoogle Scholar
  52. Kashkin, K., & Kleber, H. (1989). Hooked on hormones? An anabolic steroid addiction hypothesis. Journal of the American Medical Association, 262, 3166–3170.CrossRefGoogle Scholar
  53. Korte, S. (2001). Corticosteroids in relation to fear, anxiety and psychopathology. Neuroscience and Biobehavioral Reviews, 25, 117–142.CrossRefGoogle Scholar
  54. Kuhnen, C., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47, 763–770.CrossRefGoogle Scholar
  55. LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.Google Scholar
  56. Levine, S., Coe, C., & Wiener, S. G. (1989). Psychoneuroendocrinology of stress: A psychobiological perspective. In F. Bush & S. Levine (Eds.), Psychoendocrinology (pp. 341–377). New York: Academic Press.CrossRefGoogle Scholar
  57. Liston, C., Miller, M. M., Goldwater, D. S., Radley, J. J., Rocher, A. B., Hof, P. R., et al. (2006). Stress-induced alterations in prefrontal cortical dendritic morphology predicts selective impairments in perceptual attention set-shifting. Journal of Neuroscience, 26, 7870–7874.CrossRefGoogle Scholar
  58. Liston, C., McEwen, B., & Casey, B. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences of the United States of America, 106, 912–917.CrossRefGoogle Scholar
  59. Loewenstein, G., Weber, E., & Hsee, C. (2001). Risk as feelings. Psychological Bulletin, 127, 267–286.CrossRefGoogle Scholar
  60. Lucas, L. R., Wang, C. J., McCall, T. J., & McEwen, B. (2007). Effects of immobilization stress on neurochemical markers in the motivational system of the male rat. Brain Research, 1155, 108–115.CrossRefGoogle Scholar
  61. Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209–237.CrossRefGoogle Scholar
  62. Manning, J., Scutt, D., Wilson, D., & Lewis-Jones, D. (1998). 2nd to 4th digit length: A predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Human Reproduction, 13, 3000–3004.CrossRefGoogle Scholar
  63. Marler, C. A., & Moore, M. C. (1988). Evolutionary costs of aggression revealed by testosterone manipulations in free-living male lizards. Behavioral Ecology and Sociobiology, 23, 21–26.CrossRefGoogle Scholar
  64. Matthews, S., Simmons, A., Lane, S., & Paulus, M. (2004). Selective activation of the nucleus accumbens during risk-taking decision making. NeuroReport, 15, 2123–2127.CrossRefGoogle Scholar
  65. Mazur, A., Booth, A., & Dabbs, J. (1992). Testosterone and chess competition. Social Psychology Quarterly, 55, 70–77.CrossRefGoogle Scholar
  66. McEwen, B. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 33–44.CrossRefGoogle Scholar
  67. McEwen, B. (2001). From molecules to mind: Stress, individual differences, and the social environment. In A. Damasio et al. (Eds.), Unity of knowledge: The convergence of natural and human science. The Annals of the New York Academy of Sciences, 935, 42–49.Google Scholar
  68. McEwen, B. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Endocrine Reviews, 87, 873–904.Google Scholar
  69. McEwen, B., & Chattarji, S. (2004). Molecular mechanisms of neuroplasticity and pharmacological implications: The example of tianeptine. European Neuropsychopharmacology, 14, S497–S502.CrossRefGoogle Scholar
  70. McEwen, B., & Milner, T. (2007). Hippocampal formation: Shedding light on the influence of sex and stress on the brain. Brain Research Reviews, 55, 343–355.CrossRefGoogle Scholar
  71. McEwen, B., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220, 911–912.CrossRefGoogle Scholar
  72. McIntyre, M. (2006). The use of digit ratios as markers for perinatal androgen action. Reproductive Biology and Endocrinology, 4, 10.CrossRefGoogle Scholar
  73. Meaney, M. (1988). The sexual differentiation of social play. Trends in Neurosciences, 11, 54–58.CrossRefGoogle Scholar
  74. Monaghan, E. P., & Glickman, S. E. (2001). Hormones and aggressive behavior. In J. B. Becker, S. M. Breedlove, & D. Crews (Eds.), Behavioural endocrinology (pp. 261–287). Cambridge, MA: MIT Press.Google Scholar
  75. Neat, F., Huntingford, F., & Beveridge, M. (1998). Fighting and assessment in male cichlid fish: The effects of asymmetries in gonadal state and body size. Animal Behaviour, 55, 883–891.CrossRefGoogle Scholar
  76. O’Connor, D., Archer, J., & Wu, F. (2004). Effects of testosterone on mood, aggression, and sexual behavior in young men: A double-blind, placebo-controlled, cross-over study. Journal of Clinical Endocrinology and Metabolism, 89, 2837–2845.CrossRefGoogle Scholar
  77. Oyegbile, T., & Marler, C. (2005). Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Hormones and Behavior, 48, 259–267.CrossRefGoogle Scholar
  78. Phoenix, C., Goy, R., Gerall, A., & Young, W. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65, 369–382.CrossRefGoogle Scholar
  79. Piazza, P. V., & Le Moal, M. (1997). Glucocorticoids as biological substrate of reward: Physiological and pathophysiological implications. Brain Research Reviews, 25, 259–372.CrossRefGoogle Scholar
  80. Piazza, P., Deroche, V., Deminie`re, J. M., Maccari, S., Le Moal, M., & Simon, H. (1993). Corticosterone in the range of stress-induced levels possesses reinforcing properties: Implications for sensation-seeking behaviours. Proceedings of the National Academy of Sciences of the United States of America, 90, 11738–11742.CrossRefGoogle Scholar
  81. Pope, H., & Katz, D. (1988). Affective and psychotic symptoms associated with anabolic steroid use. American Journal of Psychiatry, 145, 487–490.CrossRefGoogle Scholar
  82. Pope, H., Kouri, E., & Hudson, J. (2000). Effects of supraphysiologic doses of testosterone on mood and aggression in normal men: A randomized controlled trial. Archives of General Psychiatry, 57, 133–140.CrossRefGoogle Scholar
  83. Reavis, R., & Overman, W. (2001). Adult sex differences on a decision-making task previously shown to depend on the orbital prefrontal cortex. Behavioral Neuroscience, 115, 196–206.CrossRefGoogle Scholar
  84. Reichlin, S. (1998). Neuroendocrinology. In J. D. Nelson, H. M. Kronenberg, & P. P. Larson (Eds.), Williams textbook of endocrinology (10th ed., pp. 165–248). Philadelphia, PA: N. B. Saunders.Google Scholar
  85. Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 2505–2511.CrossRefGoogle Scholar
  86. Rutte, C., Taborsky, M., & Brinkhof, M. (2006). What sets the odds of winning and losing?Trends in Ecology & Evolution, 21, 16–21.CrossRefGoogle Scholar
  87. Salminen, E., Portin, R., Koskinen, A., Helenius, H., & Nurmi, M. (2004). Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clinical Cancer Research, 10, 7575–7582.CrossRefGoogle Scholar
  88. Sanfey, A., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 13, 1755–1758.CrossRefGoogle Scholar
  89. Sapolsky, R. (1997). The trouble with testosterone: And other essays on the biology of the human predicament. New York: Simon & Schuster.Google Scholar
  90. Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 55–89.Google Scholar
  91. Sarnyai, Z., McKittrick, C. R., McEwen, B., & Kreek, M. J. (1998). Selective regulation of dopamine transporter binding in the shell of the nucleus accumbens by adrenalectomy and corticosterone replacement. Synapse, 30, 334–337.CrossRefGoogle Scholar
  92. Sarnyai, Z., Shaham, Y., & Heinrichs, S. C. (2001). The role of corticotropin-releasing factor in drug addiction. Pharmacological Reviews, 53, 209–243.Google Scholar
  93. Sato, S. M., Schulz, K., Sisk, C., & Wood, R. (2008). Adolescents and androgens, receptors and rewards. Hormones and Behavior, 53, 647–658.CrossRefGoogle Scholar
  94. Schroeder, J., & Packard, M. (2000). Role of dopamine receptor subtypes in the acquisition of a testosterone conditioned place preference in rats. Neuroscience Letters, 282, 17–20.CrossRefGoogle Scholar
  95. Schulkin, J., McEwen, B. S., & Gold, P. W. (1994). Allostasis, amygdala, and anticipatory angst. Neuroscience and Biobehavioral Reviews, 18, 385–396.CrossRefGoogle Scholar
  96. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207.CrossRefGoogle Scholar
  97. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurochemistry, 20, 11–21.Google Scholar
  98. Shephard, J. D., Barron, K. W., & Myers, D. A. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Research, 861, 288–295.CrossRefGoogle Scholar
  99. Shiller, R. (2005). Irrational exuberance. New York: Doubleday.Google Scholar
  100. Stroud, L., Salovey, P., & Epel, E. (2002). Sex differences in stress responses: Social rejection versus achievement stress. Biological Psychiatry, 319, 318–327.CrossRefGoogle Scholar
  101. Swenson, R., & Vogel, W. (1983). Plasma catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock. Pharmacology Biochemistry and Behavior, 18, 689–693.CrossRefGoogle Scholar
  102. Trainor, B. C., Bird, I. M., & Marler, C. A. (2004). Opposing hormonal mechanisms of aggression revealed through short-lived testosterone manipulations and multiple winning experiences. Hormones and Behavior, 45, 115–121.CrossRefGoogle Scholar
  103. Tsai, M.-J., & O’Malley, B. W. (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annual Review of Biochemistry, 63, 451–486.CrossRefGoogle Scholar
  104. Vadakkadath Meethal, S., & Atwood, C. S. (2005). The role of hypothalamic-pituitary-gonadal hormones in the normal structure and functioning of the brain. Cellular and Molecular Life Sciences, 62, 257–270.CrossRefGoogle Scholar
  105. Van den Bergh, B., & Dewitte, S. (2006). Digit ratio (2D:4D) moderates the impact of sexual cues on men’s decisions in ultimatum games. Proceedings of the Royal Society B, 273, 2091–2095.CrossRefGoogle Scholar
  106. van Honk, J., Schutter, D., Hermans, E., & Putman, P. (2003). Low cortisol levels and the balance between punishment sensitivity and reward dependency. NeuroReport, 14, 1993–1996.CrossRefGoogle Scholar
  107. van Honk, J., Schuttera, D. J. L. G., Hermansa, E. J., Putmana, P., Tuitena, A., & Koppeschaar, H. (2004). Testosterone shifts the balance between sensitivity for punishment and reward in healthy young women. Psychoneuroendocrinology, 29, 937–943.CrossRefGoogle Scholar
  108. Vermeersch, H., T’sjoen, G., Kaufman, J. M., & Vincke, J. (2008). The role of testosterone in aggressive and non-aggressive risk-taking in adolescent boys. Hormones and Behavior, 53, 463–471. doi: 10.1016/j.yhbeh.2007.11.021.
  109. Wingfield, J. C., Hegner, R. E., Dufty, A. M., & Ball, G. F. (1990). The ‘challenge hypothesis’: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136, 829–846.CrossRefGoogle Scholar
  110. Wingfield, J. C., Lynn, S., & Soma, K. (2001). Avoiding the ‘costs’ of testosterone: Ecological bases of hormone-behavior interactions. Brain, Behavior and Evolution, 57, 239–251.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • John Coates
    • 1
  • Mark Gurnell
    • 2
  • Zoltan Sarnyai
    • 2
    • 3
  1. 1.Dewline ResearchLondonUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.James Cook UniversityTownsvilleAustralia

Personalised recommendations