Implicit Component-Graph: A Discussion

  • Nicolas PassatEmail author
  • Benoît Naegel
  • Camille Kurtz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10225)


Component-graphs are defined as the generalization of component-trees to images taking their values in partially ordered sets. Similarly to component-trees, component-graphs are a lossless image model, and can allow for the development of various image processing approaches (antiextensive filtering, segmentation by node selection). However, component-graphs are not trees, but directed acyclic graphs. This induces a structural complexity associated to a higher combinatorial cost. These properties make the handling of component-graphs a non-trivial task. We propose a preliminary discussion on a new way of building and manipulating component-graphs, with the purpose of reaching reasonable space and time costs. Tackling these complexity issues is indeed required for actually involving component-graphs in efficient image processing approaches.


Component-graph Algorithmics Data-structure 


  1. 1.
    Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26, 136–157 (2009)CrossRefGoogle Scholar
  2. 2.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7, 555–570 (1998)CrossRefGoogle Scholar
  3. 3.
    Monasse, P., Guichard, F.: Scale-space from a level lines tree. J. Vis. Commun. Image Represent. 11, 224–236 (2000)CrossRefGoogle Scholar
  4. 4.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Process. 9, 561–576 (2000)CrossRefGoogle Scholar
  5. 5.
    Passat, N., Naegel, B.: An extension of component-trees to partial orders. In: ICIP, 3981–3984. (2009)Google Scholar
  6. 6.
    Passat, N., Naegel, B.: Component-trees and multivalued images: structural properties. J. Math. Imaging Vis. 49, 37–50 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees. IEEE Trans. Image Process. 23, 5152–5164 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Naegel, B., Passat, N.: Towards connected filtering based on component-graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 353–364. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38294-9_30 CrossRefGoogle Scholar
  9. 9.
    Naegel, B., Passat, N.: Colour image filtering with component-graphs. In: ICPR, pp. 1621–1626 (2014)Google Scholar
  10. 10.
    Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24, 5330–5342 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1126–1140 (2016)CrossRefGoogle Scholar
  12. 12.
    Grossiord, É., Naegel, B., Talbot, H., Passat, N., Najman, L.: Shape-based analysis on component-graphs for multivalued image processing. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 446–457. Springer, Cham (2015). doi: 10.1007/978-3-319-18720-4_38 CrossRefGoogle Scholar
  13. 13.
    Perret, B., Cousty, J., Tankyevych, O., Talbot, H., Passat, N.: Directed connected operators: asymmetric hierarchies for image filtering and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1162–1176 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CReSTICUniversité de Reims Champagne-ArdenneReimsFrance
  2. 2.CNRS, ICubeUniversité de StrasbourgStrasbourgFrance
  3. 3.LIPADEUniversité Paris-DescartesParisFrance

Personalised recommendations